Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;114(6):1257-67.
doi: 10.1016/s0016-5085(98)70432-9.

Levamisole inhibits intestinal Cl- secretion via basolateral K+ channel blockade

Affiliations

Levamisole inhibits intestinal Cl- secretion via basolateral K+ channel blockade

E C Mun et al. Gastroenterology. 1998 Jun.

Abstract

Background & aims: Phenylimidazothiazoles have recently been shown to activate wild-type and mutant cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels in transfected cells and were proposed as therapy for cystic fibrosis. The aim of this study was to investigate the effects of phenylimidazothiazoles on regulated transepithelial Cl- transport in intact epithelia.

Methods: T84 intestinal epithelial cells grown on permeable supports and stripped human colonic mucosal sheets were studied by conventional current-voltage clamping. Selective permeabilization of apical or basolateral membranes with the monovalent ionophore nystatin was used to isolate basolateral K+ and apical Cl- channel activity, respectively. 86Rb+ uptake was assessed for Na/K/2Cl cotransporter and Na+,K(+)-adenosine triphosphatase activity.

Results: In T84 monolayers and human colon, levamisole and its brominated derivative bromotetramisole failed to activate transepithelial secretion. In fact, these compounds dose-dependently inhibited secretory responses to the cyclic adenosine monophosphate agonist forskolin and the Ca2+ agonist carbachol. In permeabilized T84 monolayers, phenylimidazothiazoles weakly activated apical Cl- currents (consistent with their reported action on CFTR) and did not affect bumetanide-sensitive or bumetanide-insensitive 86+Rb+ uptake. Instead, they profoundly inhibited the basolateral Ba(2+)-sensitive and Ba(2+)-insensitive K+ currents.

Conclusions: Phenylimidazothiazoles block K+ channels required for Cl(-)-secretory responses elicited by diverse pathways in model epithelia and native colon, an effect that outweighs their ability to activate apical Cl- channels.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources