Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;45(6):673-85.
doi: 10.1109/10.678601.

Seizure detection of newborn EEG using a model-based approach

Affiliations

Seizure detection of newborn EEG using a model-based approach

M Roessgen et al. IEEE Trans Biomed Eng. 1998 Jun.

Abstract

Seizures are often the first sign of neurological disease or dysfunction in the newborn. However, their clinical manifestation is often subtle, which tends to hinder their diagnosis at the earliest possible time. This represents an undesirable situation since the failure to quickly and accurately diagnose seizure can lead to longer-term brain injury or even death. In this paper we consider the problem of automatic seizure detection in the neonate based on electroencephalogram (EEG) data. We propose a new approach based on a model for the generation of the EEG, which is derived from the histology and biophysics of a localized portion of the brain. We show that by using this approach, good detection performance of electrographic seizure is possible. The model for seizure is first presented along with an estimator for the model parameters. Then we present a seizure-detection scheme based on the model parameter estimates. This scheme is compared with the quadratic detection filter (QDF), and is shown to give superior performance over the latter. This is due to the ability of the model-based detector to account for the variability (nonstationarity) of the EEG by adjusting its parameters appropriately.

PubMed Disclaimer

Similar articles

Cited by