Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May;39(5):978-86.

Conversion of eicosapentaenoic acid to chain-shortened omega-3 fatty acid metabolites by peroxisomal oxidation

Affiliations
  • PMID: 9610764
Free article

Conversion of eicosapentaenoic acid to chain-shortened omega-3 fatty acid metabolites by peroxisomal oxidation

D E Williard et al. J Lipid Res. 1998 May.
Free article

Abstract

Human skin fibroblasts can convert arachidonic acid to 14- and 16-carbon polyunsaturated fatty acid products by peroxisomal beta-oxidation. The purpose of this study was to determine whether similar products are formed from eicosapentaenoic acid (EPA) and whether EPA and arachidonic acid compete for utilization by this oxidative pathway. Three radiolabeled metabolites with shorter retention times than EPA on reverse-phase high-performance liquid chromatography accumulated in the medium during incubation of fibroblasts with [5,6,8,9,11,12,14,15,17,18-3H] EPA ([3H]EPA). These metabolites, which were not formed from [1-14C]EPA and were not detected in the cells, were identified as tetradecatrienoic acid (14:3n-3), hexadecatetraenoic acid (16:4n-3), and octadecatetraenoic acid (18:4n-3). The most abundant product under all of the conditions tested was 16:4n-3. [3H]EPA was converted to 16:4n-3 and 14:3n-3 by fibroblasts deficient in mitochondrial long-chain acyl CoA dehydrogenase, but not by Zellweger syndrome or acyl CoA oxidase mutants that are deficient in peroxisomal beta-oxidation. Competition studies indicated that 16:4n-3 formation from 5 microM [3H]EPA was reduced by 60% when 10 microM arachidonic acid was added, but the conversion of [3H]arachidonic acid to its chain-shortened products was not decreased by the addition of 10 microM EPA. These findings demonstrate that as in the case of arachidonic acid, chain-shortened polyunsaturated fatty acid products accumulate when EPA undergoes peroxisomal beta-oxidation. While EPA does not reduce arachidonic acid utilization by this pathway, it is possible that some biological actions of EPA may be mediated by the formation of the corresponding EPA products, 16:4n-3 and 14:3n-3.

PubMed Disclaimer

Publication types

LinkOut - more resources