Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1
- PMID: 9612301
- DOI: 10.1152/ajplung.1998.274.5.L842
Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1
Abstract
Although endothelin (ET)-1 is an important regulator of pulmonary vascular tone, little is known about the mechanisms by which ET-1 causes contraction in this tissue. Using the whole cell patch-clamp technique in rat intrapulmonary arterial smooth muscle cells, we found that ET-1 and the voltage-dependent K+ (Kv)-channel antagonist 4-aminopyridine, but not the Ca(2+)-activated K(+)-channel antagonist charybdotoxin (ChTX), caused membrane depolarization. In the presence of 100 nM ChTX, ET-1 (10(-10) to 10(-7) M) caused a concentration-dependent inhibition of K+ current (56.2 +/- 3.8% at 10(-7) M) and increased the rate of current inactivation. These effects of ET-1 on K+ current were markedly reduced by inhibitors of protein kinase C (staurosporine and GF 109203X) and phospholipase C (U-73122) or under Ca(2+)-free conditions and were mimicked by activators of protein kinase C (phorbol 12-myristate 13-actetate and 1,2-dioctanoyl-sn-glycerol). These data suggest that ET-1 modulated pulmonary vascular reactivity by depolarizing pulmonary arterial smooth muscle, due in part to the inhibition of Kv current that occurred via activation of the phospholipase C-protein kinase C signal transduction pathway.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
