Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May;274(5):H1443-9.
doi: 10.1152/ajpheart.1998.274.5.H1443.

Inhibition of myocardial glucose uptake by cGMP

Affiliations

Inhibition of myocardial glucose uptake by cGMP

C Depre et al. Am J Physiol. 1998 May.

Abstract

Guanosine 3',5'-cyclic monophosphate (cGMP), a second messenger of nitric oxide (NO), regulates myocardial contractility. It is not known whether this effect is accompanied by a change in heart metabolism. We report here the effects of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), a cGMP analog, on regulatory steps of glucose metabolism in isolated working rat hearts perfused with glucose as the substrate. When glucose uptake was stimulated by increasing the workload, addition of the cGMP analog totally suppressed this stimulation and accelerated net glycogen breakdown. 8-BrcGMP did not affect pyruvate dehydrogenase activity but activated acetyl-CoA carboxylase, the enzyme that produces malonyl-CoA, an inhibitor of long-chain fatty acid oxidation. To test whether glucose metabolism could also be affected by altering the intracellular concentration of cGMP, we perfused hearts with NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthase, or with S-nitroso-N-acetylpenicillamine (SNAP), a NO donor. Perfusion with L-NAME decreased cGMP and increased glucose uptake by 30%, whereas perfusion with SNAP resulted in opposite effects. None of these conditions affected adenosine 3',5'-cyclic monophosphate concentration. Limitation of glucose uptake by SNAP or 8-BrcGMP decreased heart work, and this was reversed by adding alternative oxidizable substrates (pyruvate, beta-hydroxybutyrate) together with glucose. Therefore, increased NO production decreases myocardial glucose utilization and limits heart work. This effect is mediated by cGMP, which is thus endowed with both physiological and metabolic properties.

PubMed Disclaimer

Publication types

LinkOut - more resources