Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May;274(5):H1655-61.
doi: 10.1152/ajpheart.1998.274.5.H1655.

Effect of chronic sensory denervation on Ca(2+)-induced relaxation of isolated mesenteric resistance arteries

Affiliations

Effect of chronic sensory denervation on Ca(2+)-induced relaxation of isolated mesenteric resistance arteries

M M Mupanomunda et al. Am J Physiol. 1998 May.

Abstract

We recently reported that Ca(2+)-induced relaxation could be linked to a Ca2+ receptor (CaR) present in perivascular nerves. The present study assessed the effect of chronic sensory denervation on Ca(2+)-induced relaxation. Mesenteric resistance arteries were isolated from rats treated as neonates with capsaicin (50 mg/kg), vehicle, or saline. The effect of cumulative addition of Ca2+ was assessed in vessels precontracted with 5 microM norepinephrine. Immunocytochemical studies showed that capsaicin treatment significantly reduced the density of nerves staining positively for calcitonin gene-related peptide (CGRP) and for the CaR (CGRP density: control, 51.1 +/- 3.9 microns2/mm2; capsaicin treated, 31.4 +/- 2.8 microns2/mm2, P = 0.01; control CaR density, 46 +/- 4 microns2/mm2, n = 7; capsaicin-treated CaR density, 24 +/- 4 microns2/mm2, n = 8, P = 0.002). Dose-dependent relaxation to Ca2+ (1-5 mM) was significantly depressed in vessels from capsaicin-treated rats (overall P < 0.001, n = 6 or 7), whereas the relaxation response to acetylcholine remained intact. These data support the hypothesis that Ca(2+)-induced relaxation is mediated by activation of the CaR associated with capsaicin-sensitive perivascular neurons.

PubMed Disclaimer

Publication types

LinkOut - more resources