Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun 12;273(24):14982-8.
doi: 10.1074/jbc.273.24.14982.

Biosynthesis of O-N-acetylglucosamine-linked glycans in Trypanosoma cruzi. Characterization of the novel uridine diphospho-N-acetylglucosamine:polypeptide N-acetylglucosaminyltransferase-catalyzing formation of N-acetylglucosamine alpha1-->O-threonine

Affiliations
Free article

Biosynthesis of O-N-acetylglucosamine-linked glycans in Trypanosoma cruzi. Characterization of the novel uridine diphospho-N-acetylglucosamine:polypeptide N-acetylglucosaminyltransferase-catalyzing formation of N-acetylglucosamine alpha1-->O-threonine

J O Previato et al. J Biol Chem. .
Free article

Abstract

In this study, we have characterized the activity of a uridine diphospho-N-acetylglucosamine:polypeptide-alpha-N-acetylglucosaminylt ransferase (O-alpha-GlcNAc-transferase) from Trypanosoma cruzi. The activity is present in microsomal membranes and is responsible for the addition of O-linked alpha-N-acetylglucosamine to cell surface proteins. This preparation adds N-acetylglucosamine to a synthetic peptide KPPTTTTTTTTKPP containing the consensus threonine-rich dodecapeptide encoded by T. cruzi MUC gene (Di Noia, J. M., Sánchez D. O., and Frasch, A. C. C. (1995) J. Biol. Chem. 270, 24146-24149). Incorporation of N-[3H]acetylglucosamine is linearly dependent on incubation time and concentration of enzyme and substrate. The transferase activity has an optimal pH of 7.5- 8.5, requires Mn2+, is unaffected by tunicamycin or amphomycin, and is strongly inhibited by UDP. The optimized synthetic peptide acceptor for the cytosolic O-GlcNAc-transferase (YSDSPSTST) (Haltiwanger, R. S., Holt, G. D., and Hart, G. W. (1990) J. Biol. Chem. 265, 2563-2568) is not a substrate for this enzyme. The glycosylated KPPTTTTTTTTKPP product is susceptible to base-catalyzed beta-elimination, and the presence of N-acetylglucosamine alpha-linked to threonine is supported by enzymatic digestion and nuclear magnetic resonance data. These results describe a unique biosynthetic pathway for T. cruzi surface mucin-like molecules, with potential chemotherapeutic implications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources