Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor
- PMID: 9615441
- DOI: 10.1006/jsbi.1997.3950
Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor
Abstract
Molecular dynamics simulations with experimentally derived restraints have been used to develop atomic models of M2 helix bundles forming the pore-lining domains of the nicotinic acetylcholine receptor and related ligand-gated ion channels. M2 helix bundles have been used in microscopic simulations of the dynamics and energetics of water and ions within an ion channel. Translational and rotational motion of water are restricted within the pore, and water dipoles are aligned relative to the pore axis by the surrounding helix dipoles. Potential energy profiles for translation of a Na+ ion along the pore suggest that the protein and water components of the interaction energy exert an opposing effect on the ion, resulting in a relatively flat profile which favors cation permeation. Empirical conductance calculations based on a pore radius profile suggest that the M2 helix model is consistent with a single channel conductance of ca. 50 pS. Continuum electrostatics calculations indicate that a ring of glutamate residues at the cytoplasmic mouth of the alpha 7 nicotinic receptor M2 helix bundle may not be fully ionized. A simplified model of the remainder of the channel protein when added to the M2 helix bundle plays a significant role in enhancing the ion selectivity of the channel.
Similar articles
-
Water-mediated conformational transitions in nicotinic receptor M2 helix bundles: a molecular dynamics study.FEBS Lett. 1995 Dec 27;377(3):377-82. doi: 10.1016/0014-5793(95)01376-8. FEBS Lett. 1995. PMID: 8549759
-
A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor.Phys Biol. 2006 Jul 7;3(2):147-59. doi: 10.1088/1478-3975/3/2/007. Phys Biol. 2006. PMID: 16829701
-
Kinked-helices model of the nicotinic acetylcholine receptor ion channel and its complexes with blockers: simulation by the Monte Carlo minimization method.Biophys J. 1998 Jan;74(1):242-55. doi: 10.1016/S0006-3495(98)77783-5. Biophys J. 1998. PMID: 9449326 Free PMC article.
-
Molecular determinants of single-channel conductance and ion selectivity in the Cys-loop family: insights from the 5-HT3 receptor.Trends Pharmacol Sci. 2005 Nov;26(11):587-94. doi: 10.1016/j.tips.2005.09.011. Epub 2005 Sep 27. Trends Pharmacol Sci. 2005. PMID: 16194573 Review.
-
The nicotinic acetylcholine receptor of the Torpedo electric ray.J Struct Biol. 1998;121(2):181-90. doi: 10.1006/jsbi.1997.3949. J Struct Biol. 1998. PMID: 9615437 Review.
Cited by
-
Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics.Biophys J. 2000 May;78(5):2349-63. doi: 10.1016/S0006-3495(00)76780-4. Biophys J. 2000. PMID: 10777732 Free PMC article.
-
Modeling of ion channels.J Gen Physiol. 1999 Jun;113(6):789-94. doi: 10.1085/jgp.113.6.789. J Gen Physiol. 1999. PMID: 10352030 Free PMC article. Review. No abstract available.
-
Cell receptors and cell signalling.Mol Pathol. 2000 Dec;53(6):295-9. doi: 10.1136/mp.53.6.295. Mol Pathol. 2000. PMID: 11193047 Free PMC article. Review.
-
An alamethicin channel in a lipid bilayer: molecular dynamics simulations.Biophys J. 1999 Apr;76(4):1757-69. doi: 10.1016/s0006-3495(99)77337-6. Biophys J. 1999. PMID: 10096876 Free PMC article.
-
Mammalian nicotinic acetylcholine receptors: from structure to function.Physiol Rev. 2009 Jan;89(1):73-120. doi: 10.1152/physrev.00015.2008. Physiol Rev. 2009. PMID: 19126755 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources