Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;285(3):995-1004.

Structure-activity relationships of indole- and pyrrole-derived cannabinoids

Affiliations
  • PMID: 9618400

Structure-activity relationships of indole- and pyrrole-derived cannabinoids

J L Wiley et al. J Pharmacol Exp Ther. 1998 Jun.

Abstract

Early molecular modeling studies with Delta9-tetrahydrocannabinol (Delta9-THC) reported that three discrete regions which interact with brain cannabinoid (CB1) receptors corresponded to the C-9 position of the cyclohexene ring, the phenolic hydroxyl and the carbon side chain at the C3 position. Although the location of these attachment points for aminoalkylindoles is less clear, the naphthalene ring, the carbonyl group and the morpholinoethyl group have been suggested as probable sites. In this study, a series of indole- and pyrrole-derived cannabinoids was developed, in which the morpholinoethyl group was replaced with another cyclic structure or with a carbon chain that more directly corresponded to the side chain of Delta9-THC and were tested for CB1 binding affinity and in a battery of in vivo tests, including hypomobility, antinociception, hypothermia and catalepsy in mice and discriminative stimulus effects in rats. Receptor affinity and potency of these novel cannabinoids were related to the length of the carbon chain. Short side chains resulted in inactive compounds, whereas chains with 4 to 6 carbons produced optimal in vitro and in vivo activity. Pyrrole-derived cannabinoids were consistently less potent than were the corresponding indole derivatives and showed pronounced separation of activity, in that potencies for hypomobility and antinociception were severalfold higher than potencies for hypothermia and ring immobility. These results suggest that, whereas the site of the morpholinoethyl group in these cannabinoids seems crucial for attachment to CB1 receptors, the exact structural constraints on this part of the molecule are not as strict as previously thought.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources