Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Apr;111(4):195-203.

[Airway autonomic nervous system dysfunction and asthma]

[Article in Japanese]
Affiliations
  • PMID: 9618704
Review

[Airway autonomic nervous system dysfunction and asthma]

[Article in Japanese]
M Ichinose. Nihon Yakurigaku Zasshi. 1998 Apr.

Abstract

Airways are richly innervated by 4 nervous systems: adrenergic, cholinergic, inhibitory nonadrenergic noncholinergic (i-NANC), and excitatory NANC (e-NANC) nervous systems. Dysfunction or hyperfunction of these systems may be involved in the inflammation or airway hyperresponsiveness observed in asthmatic patients. The cholinergic nervous system is the predominant neural bronchoconstrictor pathway in humans. Airway inflammation results in exaggerated acetylcholine release from cholinergic nerves via dysfunction of the autoreceptor, muscarinic M2, which is possibly caused by a major basic protein or IgE. Vasoactive intestinal peptide (VIP) and nitric oxide (NO) released from i-NANC nerves act as an airway smooth muscle dilator. The effects of VIP and NO are diminished after allergic reaction by inflammatory cell-mediated tryptase and reactive oxygen species. Thus, in asthmatic airways, the inflammatory change-mediated neural imbalance may result in airway hyperresponsiveness. Tachykinins derived from e-NANC nerves have a variety of actions including airway smooth muscle contraction, mucus secretion, vascular leakage, and neutrophil attachment; and they may be involved in the pathogenesis of asthma. Since tachykinin receptor antagonists are effective for bradykinin- and exercise-induced bronchoconstriction in asthmatic patients, these drugs may be useful for asthma therapy.

PubMed Disclaimer

Similar articles

Cited by