Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Aug;231(2):441-8.
doi: 10.1152/ajplegacy.1976.231.2.441.

Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles

Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles

J B Li et al. Am J Physiol. 1976 Aug.

Abstract

The effects of food deprivation on protein turnover in rat soleus and extensor digitorum longus (EDL) were investigated. Muscles were removed from fed or fasted growing rats, and protein synthesis and breakdown were measured during incubation in vitro. Rates of synthesis and degradation were higher in the dark soleus than in the pale EDL. One day after food removal protein synthesis and RNA content in the EDL decreased. On the 2nd day of fasting, rates of protein catabolism in this muscle increased. Little or no change in synthesis and degradation occurred in the soleus. Consequently, during fasting the soleus lost much less weight than the EDL and other rat muscles. In unsupplemented buffer or in medium containing amino acids, glucose, and insulin, the muscles of fasted rats showed a lower rate of protein synthesis expressed per milligram of tissue but not per microgram of RNA. Thus the decrease in muscle RNA on fasting was responsible for the reduced synthesis observed under controlled in vitro conditions. In vivo the reduction in muscle protein synthesis on fasting results both from a lower RNA content and lower rate of synthesis per microgram of RNA. Reduced supply of glucose, insulin, and amino acids may account for the lower rate of synthesis per microgram of RNA demonstrable in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources