Bootstrapping for pharmacokinetic models: visualization of predictive and parameter uncertainty
- PMID: 9619776
- DOI: 10.1023/a:1011958717142
Bootstrapping for pharmacokinetic models: visualization of predictive and parameter uncertainty
Abstract
Purpose: We explore use of "bootstrapping" methods to obtain a measure of reliability of predictions made in part from fits of individual drug level data with a pharmacokinetic (PK) model, and to help clarify parameter identifiability for such models.
Methods: Simulation studies use four sets (A-D) of drug concentration data obtained following a single oral dose. Each set is fit with a two compartment PK model, and the "bootstrap" is employed to examine the potential predictive variation in estimates of parameter sets. This yields an empirical distribution of plausible steady state (SS) drug concentration predictions that can be used to form a confidence interval for a prediction.
Results: A distinct, narrow confidence region in parameter space is identified for subjects A and B. The bootstrapped sets have a relatively large coefficient of variation (CV) (35-90% for A), yet the corresponding SS drug levels are tightly clustered (CVs only 2-9%). The results for C and D are dramatically different. The CVs for both the parameters and predicted drug levels are larger by a factor of 5 and more. The results reveal that the original data for C and D, but not A and B, can be represented by at least two different PK model manifestations, yet only one provides reliable predictions.
Conclusions: The insights gained can facilitate making decisions about parameter identifiability. In particular, the results for C and D have important implications for the degree of implicit overparameterization that may exist in the PK model. In cases where the data support only a single model manifestation, the "bootstrap" method provides information needed to form a confidence interval for a prediction.
Similar articles
-
Deterministic identifiability of population pharmacokinetic and pharmacokinetic-pharmacodynamic models.J Pharmacokinet Pharmacodyn. 2017 Oct;44(5):415-423. doi: 10.1007/s10928-017-9530-4. Epub 2017 Jun 13. J Pharmacokinet Pharmacodyn. 2017. PMID: 28612141
-
Measures of uncertainty of pharmacokinetic and pharmacodynamic parameter estimates: a new computerized algorithm.Comput Biomed Res. 1996 Dec;29(6):466-81. doi: 10.1006/cbmr.1996.0034. Comput Biomed Res. 1996. PMID: 9012569
-
Analyzing multi-response data using forcing functions.J Pharmacokinet Pharmacodyn. 2005 Apr;32(2):283-305. doi: 10.1007/s10928-005-0065-8. Epub 2005 Nov 7. J Pharmacokinet Pharmacodyn. 2005. PMID: 16283535
-
Pharmacokinetic parameters estimation using adaptive Bayesian P-splines models.Pharm Stat. 2009 Apr-Jun;8(2):98-112. doi: 10.1002/pst.336. Pharm Stat. 2009. PMID: 18481279
-
A pragmatic approach to the design of population pharmacokinetic studies.AAPS J. 2005 Oct 5;7(2):E408-20. doi: 10.1208/aapsj070241. AAPS J. 2005. PMID: 16353920 Free PMC article. Review.
Cited by
-
Quantification of Radiation Injury on Neutropenia and the Link between Absolute Neutrophil Count Time Course and Overall Survival in Nonhuman Primates Treated with G-CSF.Pharm Res. 2020 May 21;37(6):102. doi: 10.1007/s11095-020-02839-3. Pharm Res. 2020. PMID: 32440783 Free PMC article.
-
The h subunit of eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames.RNA. 2010 Apr;16(4):748-61. doi: 10.1261/rna.2056010. Epub 2010 Feb 23. RNA. 2010. PMID: 20179149 Free PMC article.
-
Recommended approaches for integration of population pharmacokinetic modelling with precision dosing in clinical practice.Br J Clin Pharmacol. 2025 Apr;91(4):1064-1079. doi: 10.1111/bcp.16335. Epub 2024 Nov 21. Br J Clin Pharmacol. 2025. PMID: 39568428 Free PMC article. Review.
-
Population Pharmacokinetics of Tarlatamab, a Half-Life Extended DLL3-Directed Bispecific T-Cell Engager in Patients with Previously Treated Small Cell Lung Cancer.Clin Pharmacokinet. 2025 May;64(5):729-741. doi: 10.1007/s40262-025-01499-z. Epub 2025 Apr 22. Clin Pharmacokinet. 2025. PMID: 40261494
-
A phase I/IIa trial of atorvastatin in Japanese patients with acute Kawasaki disease with coronary artery aneurysm: Study protocol of a multicenter, single-arm, open-label trial.Contemp Clin Trials Commun. 2022 Jan 20;26:100892. doi: 10.1016/j.conctc.2022.100892. eCollection 2022 Apr. Contemp Clin Trials Commun. 2022. PMID: 35198792 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources