Voltage-operated potassium currents in the somatic membrane of rat dorsal root ganglion neurons: ontogenetic aspects
- PMID: 9622247
- DOI: 10.1016/s0306-4522(97)00600-3
Voltage-operated potassium currents in the somatic membrane of rat dorsal root ganglion neurons: ontogenetic aspects
Abstract
Whole-cell transmembrane potassium currents were studied in somatic membrane of freshly isolated rat dorsal root ganglion neurons. We defined three types of potassium currents, which were separated on the basis of their different potential dependence of activation and sensitivity to external tetraethylammonium and 4-aminopyridine. The potential dependence of kinetic and steady-state properties of a fast inactivating potassium current, a slow inactivating potassium current and a non-inactivating delayed rectifier current were described by the Hodgkin-Huxley equations. A transient fast inactivating potassium current was activated at the most negative membrane potentials and was not reduced in the presence of 10 mM tetraethylammonium in the external solution. 4-Aminopyridine (2 mM) caused an 80% inhibition of this current. The activation of the fast inactivating potassium current was properly described by fitting a single exponent raised to the fourth power. The time constant of activation changed from 4 to 1 ms in the voltage range between -30 and +40 mV. The time constant of inactivation decreased from 35 to 15 ms over the same range of potentials. Parameters for the fit of a Boltzmann equation to mean values for steady-state activation were V1/2=-20mV, k=11.8mV, and for steady-state inactivation V1/2= -85 mV, k=-9.8 mV. A transient slow inactivating potassium current had an activation threshold between -40 and -30 mV. At 2 mM 4-aminopyridine, the depression of the slow potassium current was 55%. The extracellular application of 10 mM tetraethylammonium was less effective and evoked a 40% reduction. The activation of the slow inactivating potassium current was also described by a single exponential function raised to the fourth power. The time constant of activation decreased from 12 ms at a membrane potential of -10 mV to 4 ms at the potential of 60 mV. The inactivation of slow inactivating potassium current was described by two exponents. The time constant for the fast exponent ranged from 300 ms at -20 mV to 160 ms at +60 mV. The slower exponent was also potential dependent and its time constant ranged from approximately 2600 to 1600 ms over the same potentials. Parameters for the Boltzmann equation fittings to mean values were V1/2= -12.8 mV, k=13.4 mV and V1/2= -54.6 mV, k= -12 mV for steady-state activation and inactivation, respectively. A non-inactivating delayed rectifier potassium current was activated at the most positive membrane potentials. This non-inactivating current did not change in the presence of 4-aminopyridine. Extracellular tetraethylammonium (10 mM) caused a 70% reduction of this current. The activation of the non-inactivating potassium current was described by one exponent raised to the fourth power. The time constant for activation ranged from 85 ms at -5 mV to 30 ms at 45 mV. No time-dependent inactivation was observed during 15-s testing potentials in the voltage range between 10 and +60 mV. The activation behavior was characterized by V1/2=15.3 mV, k=12.5 mV. The densities of these potassium currents were studied for three groups of animals: one, five to six and 14-15 days of postnatal development. Fifty cells were examined in each age group. All three types of potassium currents were found in each investigated neuron. The mean densities of slow and fast inactivating potassium currents increased during ontogenetic development. The densities of non-inactivating delayed rectifier potassium current decreased in the first week of ontogenetic development and did not change thereafter.
Similar articles
-
Somatic voltage-gated potassium currents of rat hippocampal pyramidal cells in organotypic slice cultures.J Physiol. 1996 Sep 1;495 ( Pt 2)(Pt 2):367-81. doi: 10.1113/jphysiol.1996.sp021600. J Physiol. 1996. PMID: 8887750 Free PMC article.
-
Kinetic study and numerical reconstruction of A-type current in granule cells of rat cerebellar slices.J Neurophysiol. 1993 Jun;69(6):2222-31. doi: 10.1152/jn.1993.69.6.2222. J Neurophysiol. 1993. PMID: 8394414
-
A fast transient potassium current in thalamic relay neurons: kinetics of activation and inactivation.J Neurophysiol. 1991 Oct;66(4):1304-15. doi: 10.1152/jn.1991.66.4.1304. J Neurophysiol. 1991. PMID: 1662262
-
Calcium-activated potassium currents in mammalian neurons.Clin Exp Pharmacol Physiol. 2000 Sep;27(9):657-63. doi: 10.1046/j.1440-1681.2000.03317.x. Clin Exp Pharmacol Physiol. 2000. PMID: 10972528 Review.
-
The roles of I(D), I(A) and I(K) in the electrophysiological functions of small diameter rat trigeminal ganglion neurons.Curr Mol Pharmacol. 2010 Jan;3(1):30-6. doi: 10.2174/1874467211003010030. Curr Mol Pharmacol. 2010. PMID: 20030627 Review.
Cited by
-
The contribution of Kv2.2-mediated currents decreases during the postnatal development of mouse dorsal root ganglion neurons.Physiol Rep. 2016 Mar;4(6):e12731. doi: 10.14814/phy2.12731. Epub 2016 Mar 31. Physiol Rep. 2016. PMID: 27033450 Free PMC article.
-
Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels.Toxins (Basel). 2023 Dec 25;16(1):12. doi: 10.3390/toxins16010012. Toxins (Basel). 2023. PMID: 38251229 Free PMC article. Review.
-
Neurokinins enhance excitability in capsaicin-responsive DRG neurons.Exp Neurol. 2007 May;205(1):92-100. doi: 10.1016/j.expneurol.2007.01.038. Epub 2007 Feb 14. Exp Neurol. 2007. PMID: 17362934 Free PMC article.
-
Kv2.1 and silent Kv subunits underlie the delayed rectifier K+ current in cultured small mouse DRG neurons.Am J Physiol Cell Physiol. 2009 Jun;296(6):C1271-8. doi: 10.1152/ajpcell.00088.2009. Epub 2009 Apr 8. Am J Physiol Cell Physiol. 2009. PMID: 19357235 Free PMC article.
-
Postnatal development of the hyperpolarization-activated excitatory current Ih in mouse hippocampal pyramidal neurons.J Neurosci. 2002 Oct 15;22(20):8992-9004. doi: 10.1523/JNEUROSCI.22-20-08992.2002. J Neurosci. 2002. PMID: 12388606 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources