Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar;14(2):71-8.
doi: 10.1016/s0891-0618(97)10014-x.

Partial co-existence of NADPH-diaphorase and acetylcholinesterase in the hypothalamic magnocellular secretory nuclei of the rat

Affiliations

Partial co-existence of NADPH-diaphorase and acetylcholinesterase in the hypothalamic magnocellular secretory nuclei of the rat

C Crespo et al. J Chem Neuroanat. 1998 Mar.

Abstract

Co-localization of NADPH-diaphorase (ND) and acetylcholinesterase (AChE) activities were explored in the magnocellular secretory nuclei of the rat hypothalamus by means of a double histochemical staining of the same sections. Partial co-existence was found in all the nuclei studied (paraventricular, supraoptic, fornicals and circular nuclei). No particular location of the neurons expressing both markers was found, although in the paraventricular nucleus all of them (ND +, AChE + and neurons expressing both markers) were preferentially located in the magnocellular subdivisions whereas in the parvicellular ones only some neurons belonging to all three types were detected, mainly located in the periventricular and medial subdivisions. The lowest degree of co-existence was found at the level of the main magnocellular nuclei (supraoptic and paraventricular) when compared with the accessory magnocellular nuclei, especially the posterior fornical and the circular nuclei. These results extend previous data on the chemical nature of the neurons producing nitric oxide in the neurosecretory nuclei and the possible functional role of this atypical messenger in the hypothalamus.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources