Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;83(6):2156-66.
doi: 10.1210/jcem.83.6.4841.

Unique 24-hydroxylated metabolites represent a significant pathway of metabolism of vitamin D2 in humans: 24-hydroxyvitamin D2 and 1,24-dihydroxyvitamin D2 detectable in human serum

Affiliations

Unique 24-hydroxylated metabolites represent a significant pathway of metabolism of vitamin D2 in humans: 24-hydroxyvitamin D2 and 1,24-dihydroxyvitamin D2 detectable in human serum

E B Mawer et al. J Clin Endocrinol Metab. 1998 Jun.

Abstract

We have produced evidence for a new metabolic pathway for vitamin D2 in humans involving the production of 24-hydroxyvitamin D2 (24OHD2) and 1,24-dihydroxyvitamin D2 [1,24-(OH)2D2]. These metabolites were produced after either a single large dose (10(6) IU) of vitamin D2 or repeated daily doses between 10(3) and 5 x 10(4) IU. We developed assay systems for the metabolites in human serum and showed that in some chronically treated patients, the concentration of 1,24-(OH)2D2 equalled that of 1,25-(OH)2D2 at about 100 pmol/L. The metabolites were identified by high performance liquid chromatography with diode array spectrophotometry for 24OHD2 and by high resolution gas chromatography-mass spectrometry for 1,24-(OH)2D2. We show that 1,24-(OH)2D2 synthesis can be stimulated by PTH, indicating a renal origin for this metabolite and postulate that it is formed from 24OHD2, which may be synthesized in liver. We conclude from this study that vitamin D2 gives rise to two biologically active products, 1,24-(OH)2D2 and 1,25-(OH)2D2, and that 1,24-(OH)2D2 could be an attractive naturally occurring analog of 1,25-(OH)2D3 for clinical use.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources