Postischemic application of lipid peroxidation inhibitor U-101033E reduces neuronal damage after global cerebral ischemia in rats
- PMID: 9626300
- DOI: 10.1161/01.str.29.6.1240
Postischemic application of lipid peroxidation inhibitor U-101033E reduces neuronal damage after global cerebral ischemia in rats
Abstract
Background and purpose: The lipid peroxidation inhibitor U-101033E was examined for effects on cerebral blood flow (CBF), cortical tissue hemoglobin oxygen saturation (HbSo2), and neuronal damage.
Methods: Fifteen minutes of global cerebral ischemia was induced by two-vessel occlusion and hypobaric hypotension. Wistar rats (n = 25) were randomized to receive vehicle (n = 9) or 40 mg/kg U-101033E (n = 9) intraperitoneally during 2 hours of reperfusion. A sham group (n = 7) had neither ischemia nor therapy. Histology was evaluated 7 days after ischemia.
Results: During late hyperperfusion (at 17 minutes), vehicle-treated animals had a higher (P = 0.044) cortical tissue HbSo2 (72.0 +/- 1.4%) than did U-101033E-treated animals (65.8 +/- 2.5%). Neuronal counts in the superficial cortex layer found after 7 days correlated negatively with rCBF (r = -0.76; P < 0.001) or cortical tissue HbSo2 (r = -0.56; P = 0.028) assessed during the late hyperperfusion phase. U-101033E reduced neuronal damage in hippocampal CA1 from 64.3 +/- 9.2% to 31.2 +/- 8.4% (P = 0.020), as well as in the superficial cortical layer from 53.5 +/- 14.6% to 12.8 +/- 11.7% (P = 0.046). While animals in the vehicle group had reduced counts in all four examined cortex layers (P < 0.05 versus sham group), there was significant cortical neuron loss in the U-101033E group in only one of four areas. U-101033E had no effect on resting CBF or CO2 reactivity.
Conclusions: Postischemic application of U-101033E protects hippocampal CA1 and cortical neurons after 15 minutes of global cerebral ischemia. The results indicate that free radical-induced lipid peroxidation contributes to reperfusion injury, a process that can be inhibited by antioxidants such as U-101033E.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
