Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May;14(3):297-304.
doi: 10.1046/j.1365-313x.1998.00121.x.

Acetyl-CoA:benzylalcohol acetyltransferase--an enzyme involved in floral scent production in Clarkia breweri

Affiliations
Free article

Acetyl-CoA:benzylalcohol acetyltransferase--an enzyme involved in floral scent production in Clarkia breweri

N Dudareva et al. Plant J. 1998 May.
Free article

Abstract

Volatile esters impart distinct characteristics to the floral scent of many plants, and are important in attracting insect pollinators. They are also important flavor compounds in fruits. The ester benzylacetate is a major constituent of the floral scent of Clarkia breweri, an annual plant native to California. The enzyme acetyl-CoA:benzylalcohol acetyltransferase (BEAT), which catalyzes the formation of benzylacetate, has been purified from C. breweri petals, and a cDNA encoding this enzyme has been isolated and characterized. The sequence of the 433-residue BEAT protein does not show high similarity to any previously characterized protein, but a 35-residue region from position 135-163 has significant similarity (42-56% identity) to several proteins known or suspected to use an acyl-CoA substrate. E. coli cells expressing C. breweri BEAT produced enzymatically active protein, and also synthesized benzylacetate and secreted it into the medium. Of the different parts of the C. breweri flower, petals contained the majority of BEAT transcripts, and no BEAT mRNA was detected in leaves. The levels of BEAT mRNA in the petals increased as the bud matured, and peaked at anthesis, paralleling changes in BEAT activity. However, three days after anthesis, mRNA levels began a steep decline, whereas BEAT activity remained high for the next two days, suggesting that the BEAT protein is relatively stable.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources