Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May;120(1):1-8.
doi: 10.1007/s002210050371.

The role of muscle spindles in ankle movement perception in human subjects with diabetic neuropathy

Affiliations

The role of muscle spindles in ankle movement perception in human subjects with diabetic neuropathy

R W van Deursen et al. Exp Brain Res. 1998 May.

Abstract

The objective of this study was to develop a quantitative method to assess muscle spindle function. Three groups of subjects were studied: ten young and healthy subjects, 15 older subjects with diabetic neuropathy, and 15 age-matched controls. All subjects performed an ankle-movement matching task with and without muscle vibration. Input from the plantar cutaneous mechanoreceptors was minimized by using a foot-clamping device. The younger subjects tracked the movement very well, but vibration had a significant effect on their performance (P < 0.001). Similar results were seen in the older control subjects, but they were less successful in tracking movement and slightly less affected by vibration. The neuropathic subjects had the most difficulty tracking, and vibration had only a small but still significant effect on their performance. The interaction between the group and the vibration effect was highly significant (P < 0.001), indicating that the performance of the control subjects changed to a greater degree in the presence of vibration than the performance of the subjects with diabetic neuropathy. Muscle spindles are the primary receptors that are involved in the change in tracking performance when vibration is added during an ankle-movement matching task, and we therefore conclude that the procedure described provides a quantitative evaluation of muscle spindle function. The results demonstrate that diabetic neuropathy degrades muscle sensory function, which may contribute to the impaired balance and unsteadiness of gait that has been observed in diabetic neuropathy.

PubMed Disclaimer

Publication types

LinkOut - more resources