Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;5(6):470-5.
doi: 10.1038/nsb0698-470.

Design, structure and stability of a hyperthermophilic protein variant

Affiliations

Design, structure and stability of a hyperthermophilic protein variant

S M Malakauskas et al. Nat Struct Biol. 1998 Jun.

Abstract

Here we report the use of an objective computer algorithm in the design of a hyperstable variant of the Streptococcal protein Gbeta1 domain (Gbeta1). The designed seven-fold mutant, Gbeta1-c3b4, has a melting temperature in excess of 100 degrees C and an enhancement in thermodynamic stability of 4.3 kcal mol(-1) at 50 degrees C over the wild-type protein. Gbeta1-c3b4 maintains the Gbeta1 fold, as determined by nuclear magnetic resonance spectroscopy, and also retains a significant level of binding to human IgG in qualitative comparisons with wild type. The basis of the stability enhancement appears to have multiple components including optimized core packing, increased burial of hydrophobic surface area, more favorable helix dipole interactions, and improvement of secondary structure propensity. The design algorithm is able to model such complex contributions simultaneously using empirical physical/chemical potential functions and a combinatorial optimization algorithm based on the dead-end elimination theorem. Because the design methodology is based on general principles, there is the potential of applying the methodology to the stabilization of other unrelated protein folds.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources