Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1998 Jun;41(6):790-7.
doi: 10.1080/001401398186649.

Effect of semi-rigid lumbosacral orthosis use on oxygen consumption during repetitive stoop and squat lifting

Affiliations
Clinical Trial

Effect of semi-rigid lumbosacral orthosis use on oxygen consumption during repetitive stoop and squat lifting

D H Duplessis et al. Ergonomics. 1998 Jun.

Abstract

The use of back belts in industry has increased despite the lack of scientific evidence supporting their efficacy. The purpose of this study was to investigate the effect of a semi-rigid lumbosacral orthosis (SRLSO) on oxygen consumption during 6-min submaximal repetitive lifting bouts of 10 kg at a lifting frequency of 20 repetitions min-1. Fifteen healthy subjects (13 men, two women) participated in this study. Each subject performed squat and stoop lifting with and without an SRLSO for a total of four lifting bouts. Lifting bouts were performed in random order. Oxygen consumption during the final minute of each lifting bout was used for analysis. A two-way analysis of variance with repeated measures was used to analyse the effects of lift and belt conditions. The stoop and squat methods were significantly different, with the squat lift requiring 23% more oxygen on average than the stoop lift for equal bouts of work. No significant difference was found between the belt and no belt condition within the same lifting technique and no interaction was present. These data suggest that an SRLSO does not passively assist the paravertebral muscles (PVM) in stabilizing the spine during submaximal lifting bouts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources