Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 May 1:840:518-24.
doi: 10.1111/j.1749-6632.1998.tb09590.x.

Insulin growth factor-I inhibits apoptosis in hematopoietic progenitor cells. Implications in thymic aging

Affiliations
Review

Insulin growth factor-I inhibits apoptosis in hematopoietic progenitor cells. Implications in thymic aging

K W Kelley et al. Ann N Y Acad Sci. .

Abstract

A decline in plasma concentrations of both growth hormone and IGF-I occurs during aging of humans and rodents, and this is accompanied by involution of the thymus gland. Exogenous growth hormone induces the synthesis of IGF-I, which acts on bone marrow-derived hematopoietic progenitors of the myeloid and lymphoid lineages to promote their replication and survival. The increase in survival of these cells is caused by the ability of IGF-I to inhibit their apoptotic death. In contrast to the multipotential colony-stimulating-factor IL-3, inhibition of apoptosis by IGF-I requires the activation of the critical intracellular effector PI 3-kinase. These data establish that hematopoietic progenitors can use more than one intracellular signaling pathway in order to maintain their survival. The data also extend the original hypothesis that IGF-I shares with the colony-stimulating factors the properties of promoting DNA synthesis and inhibiting programmed cell death. Collectively, these data establish that hematopoietic progenitor cells are important targets for IGF-I, and this is likely to be important in understanding thymic aging.

PubMed Disclaimer

Publication types

MeSH terms

Substances