Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Sep 7;443(3):556-70.
doi: 10.1016/0005-2736(76)90473-9.

Oxidative damage of retinal rod outer segment membranes and the role of vitamin E

Oxidative damage of retinal rod outer segment membranes and the role of vitamin E

C C Farnsworth et al. Biochim Biophys Acta. .

Abstract

Highly purified bovine rod outer segment membranes show loss of structural integrity under an air atmosphere. Obvious ultrastructural changes are preceded by increases in absorbance below 400 nm. These changes are inhibited by Ar or N2 atmospheres and appear to be due primarily to oxidative damage to the polyunsaturated fatty acids of the membrane lipids. Loss of polyunsaturated fatty acids, formation of malonaldehyde and fluorescent products characteristic of lipid oxidation accompany the spectral alterations. The elevated ultraviolet absorbance can largely be removed from the membranes by gentle extraction of the lipids using phospholipase C and hexane without changing the visible absorbance of rhodopsin. We have found a large seasonal variation in the endogenous level of alpha-tocopherol (vitamin E) in the bovine rod outer segment preparations. For much of the year we find that the rod outer segment membranes contain higher levels of alpha-tocopherol than have been previously reported in biological membranes. Rod outer segments which are low in endogenous tocopherol can be protected from oxygen damage by adding exogenous tocopherol. The rod outer segments are extremely susceptible to oxygen damage due to the unusually high content of polyunsaturated fatty acids in the membrane lipids. The presence of tocopherol inhibits oxygen damage but does not eliminate it. The tocopherol in the rod outer segments is consumed in air, thus complete protection from peroxidation in vitro requires an inert atmosphere as well as high levels of tocopherol. This work suggests that extensive precautions against oxidative degradation should also be employed in studies of other membrane systems where important deleterious effects of oxygen may be less obvious.

PubMed Disclaimer

Publication types

LinkOut - more resources