Evidence for chromophore-chromophore interactions in the purple membrane from reconstitution experiments of the chromophore-free membrane
- PMID: 963229
- DOI: 10.1007/BF00535654
Evidence for chromophore-chromophore interactions in the purple membrane from reconstitution experiments of the chromophore-free membrane
Abstract
We recently presented evidence showing that the visible CD spectrum of the purple membrane from Halobacterium halobium consists of two contributions: a broad positive band centered at the absorption maximum due to the interaction of the chromophore with the protein to which it is bound, and an exciton coupling band due to the interaction between chromophores of adjacent bacteriohodopsin molecules in the hexagonal surface lattice (Heyn et al., 1975); This interpretation receives strong support from the present experiments in which the chromophore-free membrane is reconstituted by the addition of retinal. Since the coupling signal arises from the interaction between pairs of neighboring chromophores, its contribution to the spectrum would be expected to be very small in the initial stages of the titration experiment, but increasing quadratically with the percentage reconstitution. The broad positive band, on the other hand, is expected to increase linearly with the percentage reconstitution. On the basis of these considerations a satisfactory explanation of the CD reconstitution experiments could be given. Since it appears to be impossible to explain the titration experiments without the quadratic term, we conclude that chromophore-chromophore interactions play an important role. No significant changes in secondary structure upon reconstitution should be detected consistent with our binding model which neglects cooperativity;
Similar articles
-
Interaction of aromatic retinal analogues with apopurple membranes of Halobacterium halobium.Biochemistry. 1984 May 22;23(11):2507-13. doi: 10.1021/bi00306a029. Biochemistry. 1984. PMID: 6477881
-
Electric dichroism in the purple membrane of Halobacterium halobium.Biophys J. 1981 Feb;33(2):263-8. doi: 10.1016/S0006-3495(81)84887-4. Biophys J. 1981. PMID: 6784783 Free PMC article.
-
Evidence for a carboxyl group in the vicinity of the retinal chromophore of bacteriorhodopsin.Biochem Biophys Res Commun. 1983 Jul 29;114(2):872-81. doi: 10.1016/0006-291x(83)90862-8. Biochem Biophys Res Commun. 1983. PMID: 6882459
-
Reconstitution of a proton pump.Biochem Soc Trans. 1976;4(4):556-9. doi: 10.1042/bst0040556. Biochem Soc Trans. 1976. PMID: 1001723 No abstract available.
-
The purple membrane from Halobacterium halobium.Annu Rev Biophys Bioeng. 1977;6:87-109. doi: 10.1146/annurev.bb.06.060177.000511. Annu Rev Biophys Bioeng. 1977. PMID: 326156 Review. No abstract available.
Cited by
-
Thermodynamic properties of purple membrane.Biophys J. 1984 Nov;46(5):567-72. doi: 10.1016/S0006-3495(84)84055-2. Biophys J. 1984. PMID: 6498271 Free PMC article.
-
Transmembranous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers.Proc Natl Acad Sci U S A. 1981 Dec;78(12):7502-6. doi: 10.1073/pnas.78.12.7502. Proc Natl Acad Sci U S A. 1981. PMID: 6278476 Free PMC article.
-
Comparative studies on the fine structure of purple membrane from Halobacterium Cutirubrum and Halobacterium Halobium.J Membr Biol. 1978 Oct 19;43(2-3):277-94. doi: 10.1007/BF01933483. J Membr Biol. 1978. PMID: 712820
-
Unique biphasic band shape of the visible circular dichroism of bacteriorhodopsin in purple membrane: Excitons, multiple transitions or protein heterogeneity?Biophys J. 1992 Nov;63(5):1432-42. doi: 10.1016/S0006-3495(92)81701-0. Biophys J. 1992. PMID: 19431860 Free PMC article.
-
The role of small intraprotein cavities in the catalytic cycle of bacteriorhodopsin.Biophys J. 2003 Aug;85(2):886-96. doi: 10.1016/S0006-3495(03)74528-7. Biophys J. 2003. PMID: 12885636 Free PMC article.