Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 1998;12(1):27-32.
doi: 10.1002/(SICI)1098-1004(1998)12:1<27::AID-HUMU4>3.0.CO;2-#.

Molecular diagnosis of McArdle disease: revised genomic structure of the myophosphorylase gene and identification of a novel mutation

Affiliations
Case Reports

Molecular diagnosis of McArdle disease: revised genomic structure of the myophosphorylase gene and identification of a novel mutation

C Kubisch et al. Hum Mutat. 1998.

Abstract

McArdle disease is a rare autosomal recessive disorder of the muscle glycogen metabolism caused by mutations in the muscle glycogen phosphorylase gene. Until now, a total number of 11 different mutations in the coding region or splice sites of the myophosphorylase gene have been identified. In contrast to a wealth of data on the RNA and protein level, little information is available on the genomic sequence of the corresponding gene. To facilitate molecular diagnosis of McArdle disease, we reinvestigated the genomic structure of the myophosphorylase gene and sequenced about 9.8 kilobases (kb) on the genomic level. By choosing 14 intronic primer pairs, we were able to amplify the complete human coding sequence as well as the adjacent splice sites of the 20 exons. Direct sequencing of the amplification products of a consanguineous Turkish family with typical McArdle disease revealed a novel single base pair deletion in exon 18, which predicts a frameshift and a premature termination of the protein. In summary, we established a system for molecular diagnosis of McArdle disease based on a revised genomic structure of the myophosphorylase gene and demonstrated its feasibility by identification of a novel mutation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources