Contributions of linker histones and histone H3 to chromatin structure: scanning force microscopy studies on trypsinized fibers
- PMID: 9635736
- PMCID: PMC1299623
- DOI: 10.1016/S0006-3495(98)77989-5
Contributions of linker histones and histone H3 to chromatin structure: scanning force microscopy studies on trypsinized fibers
Abstract
Little is known about the mechanisms that organize linear arrays of nucleosomes into the three-dimensional structures of extended and condensed chromatin fibers. We have earlier defined, from scanning force microscopy (SFM) and mathematical modeling, a set of simple structural determinants of extended fiber morphology, the critical parameters being the entry-exit angle between consecutive linkers and linker length. Here we study the contributions of the structural domains of the linker histones (LHs) and of the N-terminus of histone H3 to extended fiber morphology by SFM imaging of progressively trypsinized chromatin fibers. We find that cleavage of LH tails is associated with a lengthening of the internucleosomal center-to-center distance, and that the somewhat later cleavage of the N-terminus of histone H3 is associated with a flattening of the fiber. The persistence of the "zigzag" fiber morphology, even at the latest stages of trypsin digestion, can be attributed to the retention of the globular domain of LH in the fiber.
Similar articles
-
Linker histone tails and N-tails of histone H3 are redundant: scanning force microscopy studies of reconstituted fibers.Biophys J. 1998 Jun;74(6):2830-9. doi: 10.1016/S0006-3495(98)77990-1. Biophys J. 1998. PMID: 9635737 Free PMC article.
-
Major role of the histones H3-H4 in the folding of the chromatin fiber.Biochem Biophys Res Commun. 1997 Jan 3;230(1):136-9. doi: 10.1006/bbrc.1996.5903. Biochem Biophys Res Commun. 1997. PMID: 9020030
-
Visualization and analysis of chromatin by scanning force microscopy.Methods. 1997 May;12(1):73-83. doi: 10.1006/meth.1997.0449. Methods. 1997. PMID: 9169197
-
Higher-order structure of the 30-nm chromatin fiber revealed by cryo-EM.IUBMB Life. 2016 Nov;68(11):873-878. doi: 10.1002/iub.1568. Epub 2016 Oct 5. IUBMB Life. 2016. PMID: 27704715 Review.
-
Chromatin structure revisited.Crit Rev Eukaryot Gene Expr. 1999;9(3-4):245-55. doi: 10.1615/critreveukargeneexpr.v9.i3-4.90. Crit Rev Eukaryot Gene Expr. 1999. PMID: 10651241 Review.
Cited by
-
Stretching and imaging single DNA molecules and chromatin.J Muscle Res Cell Motil. 2002;23(5-6):377-95. doi: 10.1023/a:1023498120458. J Muscle Res Cell Motil. 2002. PMID: 12785092 Review.
-
Optical tweezers stretching of chromatin.J Muscle Res Cell Motil. 2002;23(5-6):397-407. doi: 10.1023/a:1023450204528. J Muscle Res Cell Motil. 2002. PMID: 12785093 Review.
-
Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres.Nat Commun. 2014 Aug 28;5:4751. doi: 10.1038/ncomms5751. Nat Commun. 2014. PMID: 25163529 Free PMC article.
-
Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus.Biophys J. 2008 Sep 15;95(6):3028-35. doi: 10.1529/biophysj.108.132274. Epub 2008 Jun 13. Biophys J. 2008. PMID: 18556763 Free PMC article.
-
Restrained torsional dynamics of nuclear DNA in living proliferative mammalian cells.Biophys J. 2000 May;78(5):2614-27. doi: 10.1016/S0006-3495(00)76806-8. Biophys J. 2000. PMID: 10777758 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources