Linker histone tails and N-tails of histone H3 are redundant: scanning force microscopy studies of reconstituted fibers
- PMID: 9635737
- PMCID: PMC1299624
- DOI: 10.1016/S0006-3495(98)77990-1
Linker histone tails and N-tails of histone H3 are redundant: scanning force microscopy studies of reconstituted fibers
Abstract
The mechanisms responsible for organizing linear arrays of nucleosomes into the three-dimensional structure of chromatin are still largely unknown. In a companion paper (Leuba, S. H., et al. 1998. Biophys. J. 74:2823-2829), we study the contributions of linker histone domains and the N-terminal tail of core histone H3 to extended chromatin fiber structure by scanning force microscopy imaging of mildly trypsinized fibers. Here we complement and extend these studies by scanning force microscopy imaging of selectively reconstituted chromatin fibers, which differ in subtle but distinctive ways in their histone composition. We demonstrate an absolute requirement for the globular domain of the linker histones and a structural redundancy of the tails of linker histones and of histone H3 in determining conformational stability.
Similar articles
-
Contributions of linker histones and histone H3 to chromatin structure: scanning force microscopy studies on trypsinized fibers.Biophys J. 1998 Jun;74(6):2823-9. doi: 10.1016/S0006-3495(98)77989-5. Biophys J. 1998. PMID: 9635736 Free PMC article.
-
Localization of linker histone in chromatosomes by cryo-atomic force microscopy.Biophys J. 2006 Aug 15;91(4):L35-7. doi: 10.1529/biophysj.106.090423. Epub 2006 Jun 16. Biophys J. 2006. PMID: 16782797 Free PMC article.
-
Major role of the histones H3-H4 in the folding of the chromatin fiber.Biochem Biophys Res Commun. 1997 Jan 3;230(1):136-9. doi: 10.1006/bbrc.1996.5903. Biochem Biophys Res Commun. 1997. PMID: 9020030
-
Secondary structures of the core histone N-terminal tails: their role in regulating chromatin structure.Subcell Biochem. 2013;61:37-55. doi: 10.1007/978-94-007-4525-4_2. Subcell Biochem. 2013. PMID: 23150245 Review.
-
Chromatin architectural proteins.Chromosome Res. 2006;14(1):39-51. doi: 10.1007/s10577-006-1025-x. Chromosome Res. 2006. PMID: 16506095 Review.
Cited by
-
Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus.Biophys J. 2008 Sep 15;95(6):3028-35. doi: 10.1529/biophysj.108.132274. Epub 2008 Jun 13. Biophys J. 2008. PMID: 18556763 Free PMC article.
-
Optical tweezers stretching of chromatin.J Muscle Res Cell Motil. 2002;23(5-6):397-407. doi: 10.1023/a:1023450204528. J Muscle Res Cell Motil. 2002. PMID: 12785093 Review.
-
Direct imaging of human SWI/SNF-remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tips.Mol Cell Biol. 2001 Dec;21(24):8504-11. doi: 10.1128/MCB.21.24.8504-8511.2001. Mol Cell Biol. 2001. PMID: 11713285 Free PMC article.
-
Choreography for nucleosomes: the conformational freedom of the nucleosomal filament and its limitations.Nucleic Acids Res. 2007;35(16):e106. doi: 10.1093/nar/gkm560. Epub 2007 Aug 17. Nucleic Acids Res. 2007. PMID: 17704136 Free PMC article.
-
dBigH1, a second histone H1 in Drosophila, and the consequences for histone fold nomenclature.Epigenetics. 2014 Jun;9(6):791-7. doi: 10.4161/epi.28427. Epub 2014 Mar 12. Epigenetics. 2014. PMID: 24622397 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources