Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;74(6):3273-81.
doi: 10.1016/S0006-3495(98)78034-8.

Domain structure and molecular conformation in annexin V/1,2-dimyristoyl-sn-glycero-3-phosphate/Ca2+ aqueous monolayers: a Brewster angle microscopy/infrared reflection-absorption spectroscopy study

Affiliations

Domain structure and molecular conformation in annexin V/1,2-dimyristoyl-sn-glycero-3-phosphate/Ca2+ aqueous monolayers: a Brewster angle microscopy/infrared reflection-absorption spectroscopy study

F Wu et al. Biophys J. 1998 Jun.

Abstract

Annexins comprise a family of proteins that exhibit a Ca2+-dependent binding to phospholipid membranes that is possibly relevant to their in vivo function. Although substantial structural information about the ternary (protein/lipid/Ca2+) interaction in bulk phases has been derived from a variety of techniques, little is known about the temporal and spatial organization of ternary monolayer films. The effect of Ca2+ on the interactions between annexin V (AxV) and anionic DMPA monolayers was therefore investigated using three complementary approaches: surface pressure measurements, infrared reflection-absorption spectroscopy (IRRAS), and Brewster angle microscopy (BAM). In the absence of Ca2+, the injection of AxV into an aqueous subphase beneath a DMPA monolayer initially in a liquid expanded phase produced BAM images revealing domains of protein presumably surrounded by liquid-expanded lipid. The protein-rich areas expanded with time, resulting in reduction of the area available to the DMPA and, eventually, in the formation of condensed lipid domains in spatial regions separate from the protein film. There was thus no evidence for a specific binary AxV/lipid interaction. In contrast, injection of AxV/Ca2+ at a total Ca2+ concentration of 10 microM beneath a DMPA monolayer revealed no pure protein domains, but rather the slow formation of pinhead structures. This was followed by slow (>2 h) rigidification of the whole film accompanied by an increase in surface pressure, and connection of solid domains to form a structure resembling strings of pearls. These changes were characteristic of this specific ternary interaction. Acyl chain conformational order of the DMPA, as measured by nu(sym)CH2 near 2850 cm(-1), was increased in both the AxV/DMPA and AxV/DMPA/Ca2+ monolayers compared to either DMPA monolayers alone or in the presence of Ca2+. The utility of the combined structural and temporal information derived from these three complementary techniques for the study of monolayers in situ at the air/water interface is evident from this work.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1987 Feb 5;262(4):1698-705 - PubMed
    1. Biol Chem. 1997 Mar-Apr;378(3-4):177-83 - PubMed
    1. J Biol Chem. 1989 May 15;264(14):7944-9 - PubMed
    1. J Biol Chem. 1990 Mar 25;265(9):4923-8 - PubMed
    1. Annu Rev Phys Chem. 1990;41:441-76 - PubMed

Publication types