Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Apr;48(2):123-32.
doi: 10.2170/jjphysiol.48.123.

Effects of Ca2+ and epinephrine on Ca2+ recirculation fraction and total Ca2+ handling in canine left ventricles

Affiliations
Free article

Effects of Ca2+ and epinephrine on Ca2+ recirculation fraction and total Ca2+ handling in canine left ventricles

Y Syuu et al. Jpn J Physiol. 1998 Apr.
Free article

Abstract

We investigated the effects of intracoronary Ca2+ and epinephrine on the intracellular Ca2+ recirculation fraction (RF) and total Ca2+ handling in the left ventricle (LV) of the excised cross-circulated canine heart preparation. We analyzed LV postextrasystolic potentiation (PESP) following a spontaneous extrasystole that occurred sporadically under constant atrial pacing. All PESPs decayed in alternans and none decayed monotonically. We extracted an exponential decay component from the alternans PESP, determined its beat constant (taue), and calculated RF = exp(-1/taue). Increased intracoronary Ca2+ slightly increased taue and RF, but epinephrine did not change them, although both agents enhanced LV contractility 2-3 times. Neither Ca2+ nor epinephrine affected the sinusoidal decay of the alternans PESP. These results indicate that RF via the sarcoplasmic reticulum was slightly augmented by Ca2+, but not by epinephrine. We combined these RF data with LV Ca2+ handling O2 consumption data and obtained 40-110 micromol/kg as the total amount of Ca2+ handled in one cardiac cycle in the control and enhanced contractile states. These results indicate that this new LV-level approach seems to better the understanding of the Ca2+ mass dynamics responsible for the mechanoenergetics enhanced by inotropic interventions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources