Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun 5;401(1-2):179-91.
doi: 10.1016/s0027-5107(98)00007-4.

High and low UV-dose responses in SOS-induction of the precise excision of transposons tn1, Tn5 and Tn10 in Escherichia coli

Affiliations

High and low UV-dose responses in SOS-induction of the precise excision of transposons tn1, Tn5 and Tn10 in Escherichia coli

G I Aleshkin et al. Mutat Res. .

Abstract

UV-inducible precise excision of transposons is a specific SOS-mutagenesis process. It deals with the deletion formation which has previously been demonstrated to involve direct or inverted IS-sequences of transposons. The process was used for revisiting the targeted and untargeted SOS-mutability and its relationship to the key genes for SOS-mutagenesis: the recA, lexA and umuDC. The precise excision of transposons Tn5 and Tn10 from the chromosomal insertion sites ade128 and cyc750 is induced in Escherichia coli K-12 and B cells, wild-type for DNA-repair, both by the low doses of UV-light ranging from 0.25 J m-2 to 2.5 J m-2 and the high doses within the range 5.0-40.0 J m-2. Precise excision of these transposons induced by the range of low doses incapable to induce targeted point mutations reveals its mostly untargeted nature. This process for the transposon Tn1 is not induced by UV-light within the range of doses 0.25-2.5 J m-2 while its induction is possible by UV-fluences ranging from 5.0 to 40.0 J m-2. A dose-response of the precise excision of Tn1 is similar to that of the UV-induced reversion of trpUAA point mutation that is targeted by nature and contrasts to the UV-inducible precise excision of Tn5 and Tn10. Both types of UV-inducible precise excision, demonstrated either by Tn1 or Tn5 and Tn10, are eliminated by mutations in the lexA, recA and umuDC genes indispensable for UV-induced SOS-mutability. The palindromic structures different for the transposons Tn1, Tn5 and Tn10 are discussed to be involved and affect the targeted and untargeted precise excision of transposons induced by UV-light.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources