Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Mar 30;55(1):101-14.
doi: 10.1016/s0169-328x(97)00370-7.

AP-1, CREB and CBP transcription factors differentially regulate the tyrosine hydroxylase gene

Affiliations
Free article
Comparative Study

AP-1, CREB and CBP transcription factors differentially regulate the tyrosine hydroxylase gene

M Ghee et al. Brain Res Mol Brain Res. .
Free article

Abstract

The tyrosine hydroxylase (TH) gene encodes the rate-limiting enzyme in the biosynthesis of catecholamines. We have investigated the roles of two elements of the TH promoter, the TH-'Fat Specific Element' (TH-FSE) which binds the Fos-Jun complex, and the cAMP Response Element (CRE), which binds CREB and the co-activator protein, CREB Binding Protein (CBP) in regulating TH gene transcription. In PC12 cells, the TH-FSE was required for induction by NGF while the CRE was required for induction by cAMP. We show that both elements can function independently and contribute strongly to TH promoter basal activity in PC12 cells. We employed transient expression in the F9 teratocarcinoma cell line to vary experimentally the levels of the nuclear regulators implicated in TH control by the PC12 studies. In F9 cells, the TH promoter was strongly activated by Fos and Jun, and by PKA-stimulated CREB protein. In F9 and NIH3T3 cells, CBP, a co-activator which targets Fos-Jun and PKA-stimulated CREB, also induced the TH promoter. Immunohistochemical studies in rat brain regions enriched in dopaminergic neurons, including the midbrain and olfactory bulb (OB), suggest that Fos-Jun and CREB make differential contributions to TH gene activity in different tissues. Whereas changes in Fos protein levels parallel decreases in TH protein upon olfactory deprivation, CBP levels remain unchanged. This suggests that CRE-associated factors, including CBP, are not major regulators in the OB. In contrast, the presence of CREB and the absence of Fos immunoreactivity in midbrain dopaminergic cells suggests that the CRE is the primary regulator in this region.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources