Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul 1;64(7):2691-6.
doi: 10.1128/AEM.64.7.2691-2696.1998.

Microbial Community Composition of Wadden Sea Sediments as Revealed by Fluorescence In Situ Hybridization

Affiliations

Microbial Community Composition of Wadden Sea Sediments as Revealed by Fluorescence In Situ Hybridization

E Llobet-Brossa et al. Appl Environ Microbiol. .

Abstract

The microbial community composition of Wadden Sea sediments of the German North Sea coast was investigated by in situ hybridization with group-specific fluorescently labeled, rRNA-targeted oligonucleotides. A large fraction (up to 73%) of the DAPI (4',6-diamidino-2-phenylindole)-stained cells hybridized with the bacterial probes. Nearly 45% of the total cells could be further identified as belonging to known phyla. Members of the Cytophaga-Flavobacterium cluster were most abundant in all layers, followed by the sulfate-reducing bacteria.

PubMed Disclaimer

Figures

FIG. 1
FIG. 1
Vertical profiles of the mud core (left) and beach core (right). In both cases the absolute numbers of bacteria detected are given. The drafted diagram of the cores is given on the left of each DAPI-EUB profile, indicating the transition zone to the iron-sulfide precipitation layer (black).
FIG. 2
FIG. 2
Epifluorescence micrographs of bacteria in sediment samples from the Jadebusen Bay of the German Wadden Sea. (a) Hybridization with probe EUB338, specific for Bacteria. (b) Same microscopic field as in panel a with UV excitation (DAPI staining). (c and d) Identical microscopic fields with probe SRB385 (c) and DAPI staining (d). (e) Hybridization with probe DNMA657, specific for Desulfonema. (f) Specific hybridization for Arcobacter with probe ARC94. Bar, 10 μm (applies to all panels).

References

    1. Amann R I, Binder B J, Olsen R J, Chisholm S W, Devereux R, Stahl D A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–1925. - PMC - PubMed
    1. Amann R I, Ludwig W, Schleifer K-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–169. - PMC - PubMed
    1. Anguish L J, Ghiorse W C. Computer-assisted laser scanning and video microscopy for analysis of Cryptosporidium parvum oocysts in soil, sediment, and feces. Appl Environ Microbiol. 1997;63:724–733. - PMC - PubMed
    1. Bowman J P, McCammon S A, Brown M V, Nichols D S, McMeekin T A. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol. 1997;63:3068–3078. - PMC - PubMed
    1. Cammen L M. Annual bacterial production in relation to benthic microalgal production and sediment oxygen uptake in an intertidal sandflat and an intertidal mudflat. Mar Ecol Prog Ser. 1991;71:13–25.

LinkOut - more resources