Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998;182(2):311-24.

[Interactions between central opioidergic and cholecystokininergic systems in rats: possible significance for the development of of opioid tolerance]

[Article in French]
Affiliations
  • PMID: 9648346
Review

[Interactions between central opioidergic and cholecystokininergic systems in rats: possible significance for the development of of opioid tolerance]

[Article in French]
J J Benoliel et al. Bull Acad Natl Med. 1998.

Abstract

Numerous data suggest that cholecystokinin (CCK) acts as an opioid-modulating peptide. Because pharmacological and behavioural studies have shown that CCK reduces the analgesic effects of opioids, an opioid-mediated activation of CCK-containing neurones has been proposed to be responsible for the development of opioid tolerance. In an attempt to directly assess this hypothesis, we have examined, in naive or morphine-tolerant/dependent rats, the possible influence of opioid-receptor ligands on--1 the release of CCK from spinal cord slices and--2 the extracellular levels of CCK in the frontal cortex in awake, freely moving animals. Whereas the stimulation of mu or delta 1 receptors inhibited the release of the peptide, the stimulation of delta 2 receptors increased CCK release. Morphine also increased CCK release, via an action at delta 2 receptors. The blockade of delta 1 receptors resulted in an enhancement of the peptide release, suggesting that endogenous opioids probably exert inhibitory tonic influence on CCK release through the stimulation of delta 1 receptors. In rats rendered tolerant/dependent, the inhibitory effects of opioids on CCK release, due to the stimulation of mu or delta 1 receptors, and the enhancing effect of delta 1 receptor blockade, were no longer present. In contrast, the delta 2-mediated increase in CCK release persisted. Thus, in morphine-tolerant/dependent rats, opioids apparently retain only their excitatory effects on CCK-containing neurones. These data support the idea that morphine exerts an excitatory influence on central CCKergic neurones, which could tend to reduce the analgesic action of the alkaloid, and are in line with the hypothesis that morphine tolerance/dependence is associated with an activation of CCK-containing neurones.

PubMed Disclaimer

Similar articles

LinkOut - more resources