Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Jul;47(7):1033-7.
doi: 10.2337/diabetes.47.7.1033.

Sex difference in resistance to dexamethasone-induced apoptosis in NOD mice: treatment with 1,25(OH)2D3 restores defect

Affiliations
Comparative Study

Sex difference in resistance to dexamethasone-induced apoptosis in NOD mice: treatment with 1,25(OH)2D3 restores defect

K M Casteels et al. Diabetes. 1998 Jul.

Abstract

The NOD mouse, a model for type 1 diabetes, is characterized by resistance to apoptosis in immunocytes. The aim of this study was to investigate a link between apoptosis in NOD thymocytes and autoimmunity. First, we demonstrated that the sexual dimorphism in diabetes incidence in NOD mice (females are more diabetes-prone than males) is reflected by differences in apoptosis. Apoptosis in NOD thymocytes, 24 h after dexamethasone, was decreased in both sexes compared with C57B1/6, but it was lower in female mice (26 +/- 2%) than in male mice (50 +/- 3%, P < 0.001). Further, we demonstrated that sex hormones themselves play a central role in this difference, since castration of NOD male mice, which increases diabetes incidence, decreased apoptosis levels (32 +/- 2%), while treatment of NOD female mice with dihydrotestosterone, which protects against diabetes, restored apoptosis to male levels (42 +/- 1.5%). Finally, we demonstrated that 1,25-dihydroxyvitamin D3, a steroid hormone that prevents diabetes in NOD mice, restored apoptosis levels to C57B1/6 reference levels. This improved apoptosis was seen in male (68 +/- 1 vs. 50 +/- 3% in untreated NOD mice, P < 0.001) but especially in female NOD mice (51 +/- 5 vs. 26 +/- 2% in untreated NOD mice, P < 0.001). Fluorescence-activated cell sorter analysis of thymocyte subsets revealed marked differences, especially in CD4+CD8+ and CD4+ cells. We conclude that the sexual dimorphism in diabetes incidence in NOD mice is paralleled by a dimorphism in resistance to apoptotic signals in NOD thymocytes. This resistance to apoptosis is driven by sex hormones and is corrected by 1,25-dihydroxyvitamin D3.

PubMed Disclaimer

Publication types

MeSH terms