Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun 30;37(26):9477-87.
doi: 10.1021/bi980173p.

Fusion between retinal rod outer segment membranes and model membranes: a role for photoreceptor peripherin/rds

Affiliations

Fusion between retinal rod outer segment membranes and model membranes: a role for photoreceptor peripherin/rds

K Boesze-Battaglia et al. Biochemistry. .

Abstract

Peripherin/rds plays an essential role in the maintenance of photoreceptor rod cell disk membrane structure. The purification of this protein to homogeneity [Boesze-Battaglia, K., et al. (1997) Biochemistry 36, 6835-6846] has allowed us to characterize the functional role of peripherin/rds in the maintenance of rod outer segment (ROS) membrane fusion processes. Utilizing a cell-free fusion assay system, we report that the fusion of R18-labeled ROS plasma membrane (R18-PM) with disk membranes or peripherin/rds-enriched large unilammellar vesicles (LUVs) is inhibited upon trypsinolysis of peripherin/rds. To understand this phenomenon, we tested the ability of a series of overlapping synthetic C-terminal peripherin/rds peptides to mediate model membrane fusion. Within the 63 amino acid long region of the C-terminus, we identified a minimal 15 residue long amino acid sequence (PP-5), which is necessary to promote membrane fusion. PP-5 was able to inhibit R18-PM disk membrane fusion and promoted ANTS/DPX contents mixing in a pure vesicle system. This peptide (PP-5) promoted calcium-induced vesicle aggregation of phosphatidylethanolamine:phosphatidylserine LUVs. FTIR analysis confirmed the structural prediction of this peptide as alpha-helical. When modeled as an alpha-helix, this peptide is amphiphilic with a hydrophobicity index of 0.75 and a hydrophobic moment of 0.59. PP-5 has substantial biochemical and functional homology with other well-characterized membrane fusion proteins. These results demonstrate the necessity for peripherin/rds in ROS membrane fusion, specifically the requirement for an intact C-terminal region of this protein.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources