Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May-Jun;22(3-4):197-209.
doi: 10.1016/s0141-8130(98)00017-8.

NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins

Affiliations

NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins

J A Carver et al. Int J Biol Macromol. 1998 May-Jun.

Abstract

The subunit molecular mass of alpha-crystallin, like many small heat-shock proteins (sHsps), is around 20 kDa although the protein exists as a large aggregate of average mass around 800 kDa. Despite this large size, a well-resolved 1H NMR spectrum is observed for alpha-crystallin which arises from short, polar, highly-flexible and solvent-exposed C-terminal extensions in each of the subunits, alpha A- and alpha B-crystallin. These extensions are not involved in interactions with other proteins (e.g. beta- and gamma-crystallins) under non-chaperone conditions. As determined by NMR studies on mutants of alpha A-crystallin with alterations in its C-terminal extension, the extensions have an important role in acting as solubilising agents for the relatively-hydrophobic alpha-crystallin molecule and the high-molecular-weight (HMW) complex that forms during the chaperone action. The related sHsp, Hsp25, also exhibits a flexible C-terminal extension. Under chaperone conditions, and in the HMW complex isolated from old lenses, the C-terminal extension of the alpha A-crystallin subunit maintains its flexibility whereas the alpha B-crystallin subunit loses, at least partially, its flexibility, implying that it is involved in interaction with the 'substrate' protein. The conformation of 'substrate' proteins when they interact with alpha-crystallin has been probed by 1H NMR spectroscopy and it is concluded that alpha-crystallin interacts with 'substrate' proteins that are in a disordered molten globule state, but only when this state is on its way to large-scale aggregation and precipitation. By monitoring the 1H and 31P NMR spectra of alpha-crystallin in the presence of increasing concentrations of urea, it is proposed that alpha-crystallin adopts a two-domain structure with the larger C-terminal domain unfolding first in the presence of denaturant. All these data have been combined into a model for the quaternary structure of alpha-crystallin. The model has two layers each of approximately 40 subunits arranged in an annulus or toroid. A large central cavity is present whose entrance is ringed by the flexible C-terminal extensions. A large hydrophobic region in the aggregate is exposed to solution and is available for interaction with 'substrate' proteins during the chaperone action.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources