Stimulation of type 1 and type 8 Ca2+/calmodulin-sensitive adenylyl cyclases by the Gs-coupled 5-hydroxytryptamine subtype 5-HT7A receptor
- PMID: 9651336
- DOI: 10.1074/jbc.273.28.17469
Stimulation of type 1 and type 8 Ca2+/calmodulin-sensitive adenylyl cyclases by the Gs-coupled 5-hydroxytryptamine subtype 5-HT7A receptor
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) plays an important regulatory role in developing and adult nervous systems. With the exception of the 5-HT3 receptor, all of the cloned serotonin receptors belong to the G protein-coupled receptor superfamily. Subtypes 5-HT6 and 5-HT7 couple to stimulation of adenylyl cyclases through Gs and display high affinities for antipsychotic and antidepressant drugs. In the brain, mRNA for 5-HT6 is found at high levels in the hippocampus, striatum, and nucleus accumbens. 5-HT7 mRNA is most abundant in the hippocampus, neocortex, and hypothalamus. To better understand how serotonin might control cAMP levels in the brain, we coexpressed 5-HT6 or 5-HT7A receptors with specific isoforms of adenylyl cyclase in HEK 293 cells. The 5-HT6 receptor functioned as a typical Gs-coupled receptor in that it stimulated AC5, a Gs-sensitive adenylyl cyclase, but not AC1 or AC8, calmodulin (CaM)-stimulated adenylyl cyclases that are not activated by Gs-coupled receptors in vivo. Surprisingly, serotonin activation of 5-HT7A stimulated AC1 and AC8 by increasing intracellular Ca2+. 5-HT also increased intracellular Ca2+ in primary neuron cultures. These data define a novel mechanism for the regulation of intracellular cAMP by serotonin.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous
