Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul 10;273(28):17713-9.
doi: 10.1074/jbc.273.28.17713.

Interaction of eye protein kinase C and INAD in Drosophila. Localization of binding domains and electrophysiological characterization of a loss of association in transgenic flies

Affiliations
Free article

Interaction of eye protein kinase C and INAD in Drosophila. Localization of binding domains and electrophysiological characterization of a loss of association in transgenic flies

F M Adamski et al. J Biol Chem. .
Free article

Abstract

Drosophila eye-specific protein kinase C (eye-PKC) is involved in light adaptation and deactivation. eye-PKC, NORPA (phospholipase Cbeta), and transient-receptor-potential (TRP) (calcium channel) are integral components of a signal transduction complex organized by INAD, a protein containing five PDZ domains. We previously demonstrated the direct association between the third PDZ domain of INAD with TRP in addition to the carboxyl-terminal half of INAD with the last three residues of NORPA. In this work, the molecular interaction between eye-PKC and INAD is defined via the yeast two-hybrid and ligand overlay assays. We show that the second PDZ domain of INAD interacts with the last three residues in the carboxyl-terminal tail of eye-PKC, Thr-Ile-Ile. The association between eye-PKC and INAD is disrupted by an amino acid substitution (Ile-700 to Asp) at the final residue of eye-PKC. In flies lacking endogenous eye-PKC (inaCp215), normal visual physiology is restored upon expression of wild-type eye-PKC, whereas the eye-PKCI700D mutant is completely inactive. Flies homozygous for inaCp209 and InaDp215, a mutation that causes a loss of the INAD-TRP association, were generated. These double mutants display a more severe response inactivation than either of the single mutants. Based on these findings, we conclude that the in vivo activity of eye-PKC depends on its association with INAD and that the sensitivity of photoreceptors is cooperatively regulated by the presence of both eye-PKC and TRP in the signaling complex.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources