Three-dimensional ultrasound imaging of the vasculature
- PMID: 9651592
- DOI: 10.1016/s0041-624x(97)00124-8
Three-dimensional ultrasound imaging of the vasculature
Abstract
With conventional ultrasonography, the diagnostician must view a series of two-dimensional images in order to form a mental impression of the three-dimensional anatomy, an efficient and time consuming practice prone to operator variability, which may cause variable or even incorrect diagnoses. Also, a conventional two-dimensional ultrasound image represents a thin slice of the patients anatomy at a single location and orientation, which is difficult to reproduce at a later time. These factors make conventional ultrasonography non-optimal for prospective or follow-up studies. Our efforts have focused on overcoming these deficiencies by developing three-dimensional ultrasound imaging techniques that are capable of acquiring B-mode, colour Doppler and power Doppler images of the vasculature, by using a conventional ultrasound system to acquire a series of two-dimensional images and then mathematically reconstructing them into a single three-dimensional image, which may then be viewed interactively on an inexpensive desktop computer. We report here on two approaches: (1) free-hand scanning, in which a magnetic positioning device is attached to the ultrasound transducer to record the position and orientation of each two-dimensional image needed for the three-dimensional image reconstruction; and (2) mechanical scanning, in which a motor-driven assembly is used to translate the transducer linearly across the neck, yielding a set of uniformly-spaced parallel two-dimensional images.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources