Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 May 5;72(1-2):9-19.
doi: 10.1016/s0301-4622(98)00119-7.

Modeling oscillations and waves of cAMP in Dictyostelium discoideum cells

Affiliations
Review

Modeling oscillations and waves of cAMP in Dictyostelium discoideum cells

J Halloy et al. Biophys Chem. .

Abstract

We examine the theoretical aspects of temporal and spatiotemporal organization in the cAMP signaling system of Dictyostelium discoideum amoebae which aggregate in a wavelike manner after starvation, in response to pulses of cAMP emitted with a periodicity of several minutes by cells behaving as aggregation centers. We first extend the model based on receptor desensitization, previously proposed by Martiel and Goldbeter, by incorporating the role of G proteins in signal transduction. The extended model accounts for observations on the response of the signaling system to successive step increases in extracellular cAMP. In the presence of the positive feedback loop in cAMP synthesis, this model generates sustained oscillations in cAMP and in the fraction of active cAMP receptor, similar to those obtained in the simpler model where the role of the G proteins is not taken into account explicitly. We use the latter model to address the formation of concentric and spiral waves of cAMP in the course of D. discoideum aggregation. Previous analyses of the model showed that a progressive increase in the activity of adenylate cyclase and phosphodiesterase can account for the transitions no relay-relay-oscillations-relay observed in the experiments. We show that the degree of cellular synchronization on such a developmental path in parameter space markedly affects the nature of the spatial patterns generated by the model. These patterns range from concentric waves to a small number of large spirals, and finally to a large number of smaller spirals, as the degree of developmental desynchronization between cells increases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources