Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May 15;254(1):96-102.
doi: 10.1046/j.1432-1327.1998.2540096.x.

Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose

Affiliations
Free article

Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose

H Dominguez et al. Eur J Biochem. .
Free article

Abstract

Growth of Corynebacterium glutamicum on fructose was significantly less than that obtained on glucose, despite similar rates of substrate uptake. This was in part due to the production of overflow metabolites (dihydroxyacetone and lactate) but also to the increased production of CO2 during growth on fructose. These differences in carbon-metabolite accumulation are indicative of a different pattern of carbon-flux distribution through the central metabolic pathways. Growth on glucose has been previously shown to involve a high flux (> 50% of total glucose consumption) via the pentose pathway to generate anabolic reducing equivalents. NMR analysis of carbon-isotope distribution patterns of the glutamate pool after growth on 1-13C- or 6-13C-enriched fructose indicates that the contribution of the pentose pathway is significantly diminished during exponential growth on fructose with glycolysis being the predominant pathway (80% of total fructose consumption). The increased flux through glycolysis during growth on fructose is associated with an increased NADH/NAD+ ratio susceptible to inhibit both glyceraldehyde-3-phosphate dehydrogenase and pyruvate dehydrogenase, and provoking the overflow of metabolites derived from the substrates of these two enzymes. The biomass yield observed experimentally is higher than can be estimated from the apparent quantity of NADPH associated with the pentose pathway and the flux through isocitrate dehydrogenase, suggesting an additional reaction yielding NADPH. This may involve a modified tricarboxylic acid cycle involving malic enzyme, expressed to significantly higher levels during growth on fructose than on glucose, and a pyruvate carboxylating anaplerotic enzyme.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources