Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Apr 15;253(2):357-70.
doi: 10.1046/j.1432-1327.1998.2530357.x.

Phosphatidylinositol 4-kinases

Affiliations
Free article
Review

Phosphatidylinositol 4-kinases

T Gehrmann et al. Eur J Biochem. .
Free article

Abstract

Polyphosphoinositides are involved in many signal transduction pathways in eukaryotic cells. The first committed step is catalysed by phosphatidylinositol 4-kinase leading to the formation of phosphatidylinositol 4-phosphate. In the last four years, ten cDNA molecules have been cloned which code isoforms of phosphatidylinositol 4-kinase; some of which are highly related. Characteristically, they contain a C-terminal catalytic domain which is similar to that of (poly)phosphoinositide 3-kinases and to that of more distantly related lipid/protein kinases. Alignment has characterised cDNAs from Chaenorabditis, Dictyostelium and Schizostaphyloccus pombe as those of phosphatidylinositol 4-kinases also. All these lipid kinases are related to the superfamily of protein kinases. Several amino acids are highly conserved in catalytic domains of lipid and protein kinases. Employing the catalytic subunit of the cAMP-dependent protein kinase as template, these residues can be assigned functionally. On the basis of the alignment, a phylogenetic tree of the superfamily of phosphatidylinositol kinases has been constructed. Three families, the phosphatidylinositol 4-kinases, phosphoinositide 3-kinases, and the phosphatidylinositol related lipid/protein kinases, can be recognised. Each family comprises two subfamilies. The involvement of the phosphatidylinositol 4-kinases in signal transduction processes is summarised and a new hypothesis for the function of their isoforms in polyphosphoinositide signalling is presented. The involvement of phosphatidylinositol 4-kinases in formation of lipid-protein interactions with cytoskeleton proteins and the metabolism of polyphosphoinositide in the nucleus is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

Associated data

LinkOut - more resources