Stimulation by hexose esters of lactate production by rat erythrocytes: insensitivity to 3-O-methyl-D-glucose and inhibition by 2-deoxy-D-glucose and its tetraacetic ester
- PMID: 9655194
- DOI: 10.1023/a:1006838425328
Stimulation by hexose esters of lactate production by rat erythrocytes: insensitivity to 3-O-methyl-D-glucose and inhibition by 2-deoxy-D-glucose and its tetraacetic ester
Abstract
Selected esters of D-glucose were recently proposed as tools to provide the sugar to cells, whilst bypassing the carrier system for hexose transport across the plasma membrane. In the present study, alpha-D-glucose pentaacetate, beta-D-glucose pentaacetate, alpha-D-mannose pentaacetate and, to a lesser extent, 6-O-acetyl-D-glucose, all tested at a 1.7 mM concentration, were found to increase lactate production above basal value in rat erythrocytes. Over 90 min incubation, the increment in lactate production ranged from about 1.2 (alpha-D-glucose pentaacetate) to 0.6 (6-O-acetyl-D-glucose) micromol/microl of erythrocytes. Little or no change in lactate production was observed in cells exposed to beta-L-glucose pentaacetate, alpha-D-glucose pentaethylsuccinate, alpha-D-galactose pentaacetate or beta-D-galactose pentaacetate. The metabolic response to alpha-D-glucose pentaacetate was resistant to 3-O-methyl-D-glucose (10-80 mM) which suppressed, however, that evoked by D-glucose. D-mannoheptulose (10 mM) virtually failed to affect the response to D-glucose and its pentaacetate ester. On the contrary, 2-deoxy-D-glucose (10.6 mM) inhibited to the same relative extent (55% decrease) lactate production in erythrocytes exposed to either unesterified D-glucose or alpha-D-glucose pentaacetate. The tetraacetic ester of 2-deoxy-D-glucose was more efficient than unesterified 2-deoxy-D-glucose in inhibiting lactate production from alpha-D-glucose pentaacetate. It is proposed that selected esters of saccharides represent useful tools to bypass defects in hexose transport, and to increase their nutritional or therapeutic efficiency.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources