Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;20(6):1165-75.
doi: 10.1016/s0896-6273(00)80497-3.

A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation

Affiliations
Free article

A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation

L Tang et al. Neuron. 1998 Jun.
Free article

Abstract

The cadherins are a family of cell-cell adhesion molecules that mediate Ca2+-dependent homophilic interactions between cells and transduce signals by interacting with cytoplasmic proteins. In the hippocampus, immunostaining combined with confocal microscopy revealed that both neural- (N-) and epithelial- (E-) cadherin are present at synaptic sites, implying a role in synaptic function. Pretreatment of hippocampal slices with antibodies (Abs) raised against the extracellular domain of either N-cad or E-cad had no effect on basal synaptic properties but significantly reduced long-term potentiation (LTP). Infusion of antagonistic peptides containing the His-Ala-Val (HAV) consensus sequence for cadherin dimerization also attenuated LTP induction without affecting previously established LTP. Because the intense synaptic stimulation associated with LTP induction might transiently deplete extracellular Ca2+ and hence potentially destabilize cadherin-cadherin interactions, we examined whether slices could be protected from inhibition by N-cad Abs or HAV peptides by raising the extracellular Ca2+ concentration. Indeed, we found that high extracellular Ca2+ prevented the block of LTP by these agents. Taken together, these results indicate that cadherins are involved in synaptic plasticity, and the stability of cadherin-cadherin bonds may be regulated by synaptic stimulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources