Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul 1;25(1):19-25.
doi: 10.1016/s0891-5849(98)00020-3.

Quercetin glucosides interact with the intestinal glucose transport pathway

Affiliations

Quercetin glucosides interact with the intestinal glucose transport pathway

J M Gee et al. Free Radic Biol Med. .

Abstract

Flavonols are efficient antioxidants with the potential to protect biological macromolecules from oxidative damage in vivo, and if absorbed into the circulation they may protect against cardiovascular disease. Although flavonol aglycones are present in foods at low concentrations, their glycosides are abundant in onions, apples, beans and tea, and are thought to be stable under the conditions of the human stomach and small bowel. There is, however, recent evidence to suggest that intact glycosides of quercetin may be absorbed from the small intestine by a mechanism involving the glucose transport pathway. In the present study we tested this hypothesis by measuring the effect of quercetin glycosides on the rate of efflux of galactose from the jejunal mucosa. Everted sacs of rat jejunum preloaded with 14C-galactose were exposed to quercetin glycosides isolated from onions. Quercetin mono- and diglucosides were shown to accelerate the carrier-mediated efflux of galactose via a sodium-dependent pathway. HPLC analysis confirmed the stability of the glycosides under conditions simulating those in the upper alimentary tract. These studies suggest that purified quercetin glucosides are capable of interacting with the sodium dependent glucose transport receptors in the mucosal epithelium and may therefore be absorbed by the small intestine in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources