Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul 7;37(27):9688-94.
doi: 10.1021/bi980338u.

Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration

Affiliations

Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration

S Diamant et al. Biochemistry. .

Abstract

Heat-shock proteins DnaK, DnaJ, and GrpE (KJE) from Escherichia coli constitute a three-component chaperone system that prevents aggregation of denatured proteins and assists the refolding of proteins in an ATP-dependent manner. We found that the rate of KJE-mediated refolding of heat- and chemically denatured proteins is decreased at high temperatures. The efficiency and reversibility of protein-folding arrest during and after heat shock depended on the stability of the complex between KJE and the denatured proteins. Whereas a thermostable protein was released and partially refolded during heat shock, a thermolabile protein remained bound to the chaperone. The apparent affinity of GrpE and DnaJ for DnaK was decreased at high temperatures, thereby decreasing futile consumption of ATP during folding arrest. The coupling of ATP hydrolysis and protein folding was restored after the stress. This strongly indicates that KJE chaperones are heat-regulated heat-shock proteins which can specifically arrest the folding of aggregation-prone proteins during stress and preferentially resume refolding under conditions that allow individual proteins to reach and maintain a stable native conformation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources