Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;80(1):83-91.
doi: 10.1152/jn.1998.80.1.83.

Full weight-bearing hindlimb standing following stand training in the adult spinal cat

Affiliations
Free article

Full weight-bearing hindlimb standing following stand training in the adult spinal cat

R D De Leon et al. J Neurophysiol. 1998 Jul.
Free article

Abstract

Behavioral and physiological characteristics of standing were studied in nontrained spinal cats and in spinal cats that received daily stand training of the hindlimbs for 12 wk. Training consisted of assisting the cats to stand with full weight support either on both hindlimbs or on one hindlimb (30 min/day, 5 days/wk). Extensor muscle electromyographic (EMG) amplitude and extension at the knee and ankle joints during full weight bearing recovered to prespinal levels in both stand-trained and nontrained spinal cats. However, full weight bearing of the hindquarters was sustained for up to approximately 20 min in the spinal cats that received bilateral stand training compared with approximately 4 min in cats that were not trained to stand. Unilateral stand training selectively improved weight bearing on the trained limb based on ground reaction forces and extensor muscle EMG activity levels measured during bilateral standing. These results suggest that the capacity of the adult lumbar spinal cord to generate full weight-bearing standing can be improved by as much as fivefold by the repetitive activation of selected neural pathways in the spinal cord after supraspinal connectivity has been eliminated. Given that stepping is improved in response to step training, it appears that the recovery of standing provides another example of training-specific motor learning in the spinal cord, i.e., the spinal cord learns to perform hindlimb standing by practicing that specific task.

PubMed Disclaimer

Publication types

LinkOut - more resources