Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;80(1):389-405.
doi: 10.1152/jn.1998.80.1.389.

Corticoreticular pathways in the cat. I. Projection patterns and collaterization

Affiliations
Free article

Corticoreticular pathways in the cat. I. Projection patterns and collaterization

B Kably et al. J Neurophysiol. 1998 Jul.
Free article

Abstract

This paper summarizes and compares the projection patterns and the receptive fields of cortical neurons in areas 4 and 6 that project to the pontomedullary reticular formation (PMRF). A total of 326 neurons were recorded in area 4 and 129 in area 6 in four awake, unrestrained cats that were chronically implanted with arrays of electrodes in the PMRF and the pyramidal tract (PT). In area 4, 47% of the neurons projected to the caudal PT but not to the PMRF (PTNs); 19% were activated only from the PMRF [corticoreticular neurons (CRNs)], whereas 27% were activated from both the PT and the PMRF (PTN/CRNs). More PTN/CRNs conducted at velocities >20 m/s (82%) than did CRNs (23%). In area 6, only 19% of the neurons were identified as PTNs, 12% were PTN/CRNs and 31% were CRNs; a further 38% could not be activated from either structure. Collateral branches within the PMRF conducted at maximum velocities of 20 m/s (average = 6.5 m/s). No significant differences in the conduction velocities of the collateral branches were found either between fast and slow PTNs or between area 4 and area 6 neurons. A large proportion of neurons in area 4 (85/173, 49%) were activated by passive manipulation of the more distal, contralateral forelimb, with approximately equal numbers being classed as PTNs, PTN/CRNs and CRNs. Most neurons in area 6 for which a receptive field could be found were excited by lightly touching or tapping the face and neck; a receptive field could not be determined for 39% of the area 6 neurons compared with only 5% of those in area 4. Finally, there was evidence that neurons in quite widespread areas of the pericruciate cortex, including both areas 4 and 6 projected onto similar, restricted regions of the PMRF. The fact that the cortical projection from area 4 to the PMRF includes a high percentage of fast PTNs with a receptive field on the distal forelimb is consistent with the view that this projection may serve to integrate movement and the dynamic postural adjustments that accompany them. The fact that the cortical projection from area 6 to the PMRF is primarily from slow PTNs with receptive fields on the face, neck and back is consistent with a role for this cortical area in adjusting the general posture of the animal on which movements are superimposed.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources