Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;54(1):1-7.
doi: 10.1124/mol.54.1.1.

J-104,871, a novel farnesyltransferase inhibitor, blocks Ras farnesylation in vivo in a farnesyl pyrophosphate-competitive manner

Affiliations

J-104,871, a novel farnesyltransferase inhibitor, blocks Ras farnesylation in vivo in a farnesyl pyrophosphate-competitive manner

M Yonemoto et al. Mol Pharmacol. 1998 Jul.

Abstract

Farnesylation of the activated ras oncogene product by protein farnesyltransferase (FTase) is a critical step for its oncogenic function. Because squalene synthase and FTase recruit farnesyl pyrophosphate as a common substrate, we modified squalene synthase (SS) inhibitors to develop FTase inhibitors. Among the compounds tested, a novel FTase inhibitor termed J-104,871 inhibited rat brain FTase with an IC50 of 3.9 nM in the presence of 0.6 microM farnesyl pyrophosphate (FPP), whereas it scarcely inhibited rat brain protein geranylgeranyltransferase-I or SS. The in vitro inhibition of rat brain FTase by J-104,871 depends on the FPP concentration but not on the concentration of Ras peptide. Thus, in vitro studies strongly suggest that J-series compounds have an FPP-competitive nature. J-104,871 also inhibited Ras processing in activated H-ras-transformed NIH3T3 cells with an IC50 value of 3.1 microM. We tested the effects of lovastatin and zaragozic acid A, which modify cellular FPP levels, on Ras processing of J-104,871. Lovastatin, a hepatic hydroxymenthyl coenzyme A reductase inhibitor that reduced the cellular FPP pool, increased the activity of J-104,871, whereas 3 microM zaragozic acid A, an SS inhibitor that raised the FPP level, completely abrogated the activity of J-104,871 even at 100 microM. These results suggest that J-104,871 inhibits FTase in an FPP-competitive manner in whole cells as well as in the in vitro system. Furthermore, J-104,871 suppressed tumor growth in nude mice transplanted with activated H-ras-transformed NIH3T3 cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources