Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep 5;41(3):455-60.
doi: 10.1002/(sici)1097-4636(19980905)41:3<455::aid-jbm15>3.0.co;2-h.

Fluorescent microplate assay for respiratory burst of PMNs challenged in vitro with orthopedic metals

Affiliations

Fluorescent microplate assay for respiratory burst of PMNs challenged in vitro with orthopedic metals

G Ciapetti et al. J Biomed Mater Res. .

Abstract

This report describes a simple, rapid, automated microassay for measuring in vitro changes of oxidative burst of phagocytes following challenge with metals for orthopedic devices. The production of reactive oxygen species (ROS) by polymorphonuclear leukocytes (PMNs) was measured using 2',7'-dichlorofluorescin-diacetate (DCFH-DA) as fluorescent probe. DCFH-DA enters the cells and is oxidized by ROS to fluorescent DCF. The DCF generated was directly proportional to ROS produced intracellularly: The fluorescence intensity was read and converted to an index of ROS production by cells. In our experimental system, granulocytes (PMNs) were isolated from normal human blood and seeded in microplates. To verify if metals could influence ROS production, chromium, cobalt, nickel, molybdenum, titanium, aluminum, and vanadium prepared as aqueous extracts in phosphate-buffered saline were tested onto PMNs using phorbolmyristate acetate (PMA) as positive control. Molybdenum, aluminum, and vanadium increased ROS generation by PMNs, while signals not different from unstimulated PMNs were recorded for chromium, cobalt, nickel, and titanium. The DCFH-DA microplate-based assay provides an in vitro tool for the detection of oxygen-reactive species generated by PMNs as a response to metals.

PubMed Disclaimer

Publication types

LinkOut - more resources