Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;39(8):1444-52.

Dopamine D1 stimulation of Na+,K+,Cl- cotransport in human NPE cells: effects of multiple hormones

Affiliations
  • PMID: 9660493

Dopamine D1 stimulation of Na+,K+,Cl- cotransport in human NPE cells: effects of multiple hormones

K Riese et al. Invest Ophthalmol Vis Sci. 1998 Jul.

Abstract

Purpose: To determine the effects of dopamine on Na+,K+,Cl- cotransport in human ciliary nonpigmented epithelial (NPE) cells.

Methods: The authors used 86Rb+ as a marker for K+ to study ouabain-insensitive, bumetanide-sensitive 86Rb+ uptake in cultured fetal human NPE monolayers.

Results: Na+,K+,Cl- cotransport was stimulated 1.63-fold by 10 microM dopamine. Stimulation was dose dependent, with a maximum stimulation occurring at 10 microM dopamine and an EC50 of 0.5 microM. NaK-ATPase (measured as ouabain-sensitive, bumetanide-insensitive 86Rb+ uptake) and bumetanide-insensitive, ouabain-insensitive 86Rb+ uptake were not affected by dopamine. The D1-receptor-specific antagonist, SCH23390, inhibited stimulation by 10 microM dopamine more than 90% at 1 microM, with an IC50 of 4 nM, whereas the D2-receptor-specific antagonist, sulpiride, was over 250 times less effective. Similarly, a D1 agonist, SKF81297, was more potent than the D2 agonist bromocriptine in stimulation of Na+,K+,Cl- cotransport. The beta-adrenergic antagonists timolol and propranolol did not significantly inhibit stimulation of Na+,K+,Cl- cotransport by dopamine. Conversely, SCH23390, showed minimal inhibition of isoproterenol stimulation of Na+,K+,Cl- cotransport. Stimulation by maximally stimulating concentrations of isoproterenol and dopamine were not additive, but were similar to stimulation by 1 microM forskolin, suggesting that adenylyl cyclase may be close to maximally activated by either catecholamine. In vivo concentrations (stimulation approximately 25% over control) of dopamine, isoproterenol, and norepinephrine added together stimulated Na+,K+,Cl- cotransport 80% to 89% of stimulation by maximal concentrations of these drugs. The protein kinase A inhibitor N-[2-p-bromocinnamylaminoethyl]-5-isoquinolinesulfonamide (H-89) blocked dopamine stimulation of Na+,K+,Cl- cotransport by more than 75%, whereas phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, given with 10 microM dopamine inhibited Na+,K+,Cl- cotransport by 75% to 80%, similarly to inhibition by PMA given alone.

Conclusions: Dopamine stimulates Na+,K+,Cl- cotransport in NPE through dopamine-D1-type receptors and activation of protein kinase A. Beta-adrenergic receptors do not appear to play a role. Inhibition of Na+,K+,Cl- cotransport by protein kinase C is dominant over stimulation of Na+,K+,Cl- cotransport through the cyclic adenosine monophosphate pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources